Информация о владельце:

ФИО: Максимов Алексей Борисович Должность: директор департамента по образовательной политике

Дата подпредерадьное тремень высшего образования

Уникальный программный ключиосковский политехнический университет» 8db180d1a3f02ac9e60521a5672742735c18b1d6 (МОСКОВСКИЙ ПОЛИТЕХ)

Полиграфический институт

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Материалы нанотехнологий

Направление подготовки/специальность

22.03.01 Материаловедение и технологии материалов

Профиль/специализация

Цифровые технологии в материаловедении

Квалификация бакалавр

Форма обучения Очная

Разработчик (и):

Старший преподаватель кафедры ИМП

The

/Г.Н. Журавлева/

Согласовано:

Заведующий кафедрой ИМП, к.ф.-м.н., доцент

Jon

/Г.О. Рытиков/

Руководитель образовательной программы 22.03.01 Материаловедение и технологии материалов профиль «Цифровые технологии в материаловедении»

к.т.н., доцент

/Л.Ю. Комарова/

Содержание

1.	Ц	Цели, задачи и планируемые результаты обучения по дисциплине 4					
2.	M	Место дисциплины в структуре образовательной программы					
3.	C	труктура и содержание дисциплины	5				
	3.1.	Виды учебной работы и трудоемкость	5				
	3.2.	Тематический план изучения дисциплины					
	3.3.	Содержание дисциплины	6				
	3.4.	Тематика семинарских/практических и лабораторных занятий	7				
		Тематика курсовых проектов (курсовых работ)					
4.		чебно-методическое и информационное обеспечение					
		Нормативные документы и ГОСТы					
	4.2.						
	4.3.	Дополнительная литература					
		Электронные образовательные ресурсы					
	4.5.						
	4.6.	Современные профессиональные базы данных и информационные спр	авочные				
		истемы					
5.		Гатериально-техническое обеспечение					
6.		Гетодические рекомендации					
		Методические рекомендации для преподавателя по организации обучения					
		Методические указания для обучающихся по освоению дисциплины					
7.		онд оценочных средств					
		Методы контроля и оценивания результатов обучения					
	7.2.	- · · · · · · · · · · · · · · · · · · ·					
	7.3.						

1 Цели, задачи и планируемые результаты обучения по дисциплине

Целью освоения дисциплины «Материалы нанотехнологий» является формирование основных приемов познавательной деятельности специалистов в наноиндустрии,

формирование навыков, необходимых для участия в создании новых материалов и технологий производства.

Задачи дисциплины «Материалы нанотехнологий»:

- расширение и закрепление теоретических и практических знаний по неорганической, органической, физической и коллоидной химии, необходимых для проведения научных исследований и постановки оптимизационных задач;
- изучение сущности физико-химических и химических процессов, происходящих в производстве на наноуровне;
- формирование представлений об основных этапах решения задачи реализации конкретного направления нанотехнологии в материаловедении;
- ознакомление с современными достижениями по созданию, применению и перспективам развития нанотехнологий.

Обучение по дисциплине «Материалы нанотехнологий» направлено на формирование у обучающихся следующих компетенций:

Код и наименование компетенций	Индикаторы достижения компетенции
ПК-1	ИПК- 1.2. Моделирует и разрабатывает этапы
Способен разрабатывать цифровые	технологических процессов и составы
модели типовых технологических	материалов на основе анализа условий их
процессов и технологии материалов	эксплуатации и с учетом экономических
	факторов
ПК -2	ИПК-2.1. Выполняет исследования и
Способен использовать на практике	испытания материалов, изделий и процессов
знания о полимерных материалах	их производства
различного назначения, выполнять	
исследования и испытания материалов	

2 Место дисциплины в структуре образовательной программы

Дисциплина «Материалы нанотехнологий» относится к обязательной части, формируемой участниками образовательных отношений блока Б1 «Дисциплины (модули)».

Дисциплина «Материалы нанотехнологий» взаимосвязана логически и содержательно-методически со следующими дисциплинами:

В части блока Б1:

- «Безопасность жизнедеятельности».
- «Физическая, коллоидная химии и основы электрохимии».
- «Физика и химия высокомолекулярных соединений».
- «Химия материалов».
- «Методы исследования и испытания материалов».
- «Методы управления поверхностными свойствами материалов».
- «Методы реновации и вторичной переработки материалов».
- «Принципы создания защитных материалов».
- «Коррозия, старение и защита материалов».
- «Керамические и плавленые силикаты».

В части блока Б2:

- учебная практика (практика по получению первичных навыков научноисследовательской работы).

3 Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетных единиц (108 часов).

3.1 Виды учебной работы и трудоемкость

3.1.1 Очная форма обучения

No	Вид учебной работы	Количество	Семестры
п/п	вид учеоной работы	часов	4
1	Аудиторные занятия	54	54
	В том числе:		
1.1	Лекции	18	18
1.2	Семинарские/практические занятия	-	-
1.3	Лабораторные занятия	36	36
2	Самостоятельная работа	54	54
	В том числе:		
2.1	Курсовой проект (работа)	-	-
2.2	Расчетно-графические работы	-	-
2.3	Реферат	-	-
2.4	Подготовка к лабораторным работам	30	30
2.5	Тестирование	24	24
3	Промежуточная аттестация		
	зачет		зачет
	Итого	108/3	108

3.2 Тематический план изучения дисциплины

3.2.1 Очная форма обучения

Трудоемкост			ость, ча	ть, час			
			Аудиторная работа				ая
№ п/п	Разделы/темы дисциплины	Всего	Лекции	Семинарские/ практические занятия	Лабораторные занятия	Практическая подготовка	Самостоятельная работа
1	Раздел 1. Введение в дисциплину. Классификация нанообъектов	12	2	-	4	-	6
2	Раздел 2. Свойства наноструктурированных материалов		2	-	4	-	6
3	Раздел 3. Методы исследования наноструктур		4	-	8	-	12
4	Раздел 4. Методы получения и очистки нанообъектов с заданными свойствами	12	2	-	4	-	6

5 Раздел 5. Углеродные и		12	2	-	4	-	6
	неорганические наноструктуры						
6 Раздел 6. Полимерные		12	2	-	4	-	6
	наноструктурированные и						
	композиционные материалы						
7 Раздел 7. Микро- и нанолитография		12	2	-	4	-	6
8	Раздел 8. Применение	12	2	-	4	-	6
	наноматериалов в полиграфии и						
	упаковке						
	Итого	108	18	-	36	-	54

3.3 Содержание дисциплины

Раздел 1. Введение в дисциплину. Классификация нанообъектов

Краткий обзор содержания курса. Определения и терминология. Критерии определения нанообъектов: размер и функциональные свойства. Основные этапы развития нанотехнологий. Классификация нанообъектов. Основы субмикронной технологии и технологии изделий наноэлектроники. Обзор учебно-научной литературы по проблемам нанотехнологий.

Раздел 2. Свойства наноструктурированных материалов

Основные физико-химические свойства наночастиц, их отличительные особенности по сравнению с объемными материалами.

Основные механические, электрические и магнитные свойства наночастиц.

Исследование механических и магнитных свойств материалов. Высокотемпературная сверхпроводимость и высокотемпературные сверхпроводники. Исследование электрических свойств материалов.

Раздел 3. Методы исследования наноструктур

Объемные и поверхностные методы анализа наноматериалов. Исследование морфологии, химического состава и структуры, атомной структуры наноматериалов. Электронная микроскопия. Сканирующая зондовая микроскопия. Рентгеновская электронная спектроскопия.

Раздел 4. Методы получения и очистки нанообъектов с заданными свойствами

Общие методы получения наноматериалов. Создание объектов по принципу «сверху – вниз» и «снизу - вверх». Эпитаксиальные методы самоорганизации квантовых точек.

Получение углеродных наноструктур. Методы дугового разряда, лазерной абляции, химического осаждения из газовой фазы. Возможности методов по синтезу однослойных и многослойных нанотрубок. Стадии очистки нанотрубок. Самоорганизация нанотрубок.

Методы получения полимерных композиционных наноструктурированных покрытий. Методы получения неорганических наноматериалов, покрытий, слоев и элементов микроэлектроники.

Раздел 5. Углеродные и неорганические наноструктуры

Фуллерены. Основные физико-химические свойства углерода, углеродная связь, гибридизация. Аллотропные формы углерода: графит, алмаз, карбин, графен, аморфный углерод, фуллерены, нанотрубки. Структура фуллеренов \mathbf{C}_{60} и \mathbf{C}_{70} : геометрия, тип связей. Другие кластеры углерода. Методы синтеза и очистки фуллеренов. Соединения на основе фуллеренов: фуллероиды, фуллериты, фуллериды, интеркаллированные и эндоэдральные структуры. Области применения фуллеренов.

Нанотрубки. Структура одностенных нанотрубок, индексы хиральности, основные типы хиральности. Архитипичные нанотрубки.

Структура многослойных нанотрубок. Дефекты в структуре нанотрубок и их влияние на геометрию и проводимость нанотрубок.

Применение нанотрубок. Другие углеродные наноструктуры. Нанотрубки других материалов: дисульфид вольфрама, хризотил.

Наноалмазы. Структура и свойства наноалмазных пленок и покрытий, их применение в микроэлектронике.

Нанонити. Нанонити на основе углерода и металлов. Методы их получения и механизмы роста. Нанонити, состоящие из двух и более металлов. Соединения нанонитей в сложные структуры. Физико-химические свойства нанонитей.

Наночастицы золота и серебра. Методы получения, структура, физико-химические и оптические свойства, поверхностный плазмонный резонанс

Алюмосиликаты. Основные физико-химические свойства, структура. Монтмориллонит, упаковочные композиционные материалы.

Раздел 6. Полимерные наноструктурированные и композиционные материалы

Полимерные наноструктурированные и композиционные материалы и покрытия, их свойства и области применения в микроэлектронике. Электропроводящие покрытия.

Раздел 7. Микро- и нанолитография

Введение, определение понятий «микролитография» и «нанолитография». Типы микро- и нанолитографии.

Технологический процесс фотолитографии. Закон Мура, современный транзистор. Резисты. Фотошаблоны. Экспозиция. Разрешение фотолитографии. Литография в области глубокого УФ, рентгеновская и электронная литография. Электронная литография с прямой записью электронным пучком.

Нанолитография. Оптические методы нанолитографии. Нанолитография с помощью СЗМ. Наноимпринт литография.

Раздел 8. Применение наноматериалов в полиграфии и упаковке

Печатная электроника, функциональные полиграфические и упаковочные материалы. Солнечные батареи, транзисторы, OLED, сенсоры: свойства, технологии изготовления, включая печатные способы, основные проблемы производства и эксплуатации.

3.4 Тематика лабораторных занятий

Лабораторная работа 1. Исследование свойств наноматериалов с помощью атомносиловой и растровой электронной микроскопии, рентгеновской фотоэлектронной спектроскопии.

Лабораторная работа 2. Органические полупроводниковые наноматериалы. Получение наноструктурированных фотопроводящих покрытий на основе красителей

Лабораторная работа 3. Получение золей (нанообъектов) методом химической конденсации (методом снизу-вверх).

Лабораторная работа 4. Исследование наноразмерных характеристик капиллярно-пористой структуры различных видов.

Лабораторная работа 5. Исследование морфологических свойств углеродных и неорганических наноматериалов.

Лабораторная работа 6. Выделение фуллеренов из углеродного материала и идентификация их с помощью электронного микроскопа.

Лабораторная работа 7. Исследование адсорбционных свойств наноалмазов хроматографическим методом.

Лабораторная работа 8. Определение физико-химических свойств краски, содержащей наноалмазы.

Лабораторная работа 9. Определение оптических свойств красочного слоя, содержащего наноалмазы.

3.5 Тематика курсовых проектов (курсовых работ)

Курсовых проектов в дисциплине не предусмотрено.

4 Учебно-методическое и информационное обеспечение

4.1 Нормативные документы и ГОСТы

- 1. Φ ГОС ВО 22.03.01 Материаловедение и технологии материалов, утвержденный приказом МОН РФ от 02 июня 2020 г. № 701.
- 2. Академический учебный план по направлению подготовки: 22.03.01 Материаловедение и технологии материалов. Профиль: Цифровые технологии в материаловедении. Форма обучения очная. 2024.
- 3. Матрица к АУП 22.03.01.02 Материаловедение и технологии материалов. (Цифровые технологии в материаловедении). Прием 2024/2025 гг. 2024.
- 4. Указ Президента Российской Федерации от 01.12.2016 № 642 «Стратегии научно-технологического развития Российской Федерации».
- 5. Приказ Министерства образования и науки Российской Федерации от 23.08.2017 № 816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ».

4.2 Основная литература

- 1. Рогов В.А. Технология конструкционных материалов. Нанотехнологии: учебник для студентов высших учеб. заведений, 2-е изд., пер.и доп. Юрайт, 2018, 190 с.
- 2. Воронов В.К. Ким Де Ч., Янюшкин А.С. Свойства и применение наноматериалов: учебник для студентов высших учеб. заведений, 5-е изд. 2018, 210 с.

4.3 Дополнительная литература

- 1. Рыжонков, Д.И. Наноматериалы: учебное пособие / Д. И. Рыжонков, Лёвина, В.В., Дзидзигури, Э.Л. М.: БИНОМ. Лаборатория знаний, 2010. 365 с.
- 3. Бенда, А.Ф. Материалы нанотехнологий в полиграфии: учеб. пособие для студентов высших учеб. заведений, обучающихся по направлению 150100.62 Материаловедение и технологии материалов. Ч.1. Введение в материалы нанотехнологий. Углеродные наноструктуры / А. Ф. Бенда; М-во образования и науки РФ, ФГБОУ ВПО "Моск. гос. ун-т печати имени Ивана Федорова". М.: МГУП имени Ивана Федорова, 2013. 138 с.
- 4. Бенда, А.Ф. Материалы нанотехнологий в полиграфии: учебное пособие для студентов, обучающихся по направлениям: 150100.62 Материаловедение и технологии материалов; 261700.62 Технология полиграфического и упаковочного производства; 051000.62 Профессиональное обучение. Ч. 2. Наноматериалы. Проблемы безопасности, экологии и этики в применении наноматериалов / А. Ф. Бенда; М-во образования и науки РФ, ФГБОУ ВПО "Моск. гос. ун-т печати имени Ивана Федорова". М.: МГУП имени Ивана Федорова, 2014. 130 с.

- 5. Бенда, А.Ф. Материалы нанотехнологий в полиграфии: учебное пособие для студентов, обучающихся по направлениям: 92.03.03 Технология полиграфического и упаковочного производства; 22.03.01— Материаловедение и технологии материалов; 44.03.04 Профессиональное обучение. Ч. 3. Нанолитография. Нанотехнологии и материалы нанотехнологий в полиграфии / А. Ф. Бенда; М-во образования и науки РФ, ФГБОУ ВПО "Моск. гос. ун-т печати имени Ивана Федорова". М.: МГУП имени Ивана Федорова, 2015. 220 с.
- 6. Бенда, А.Ф. Материалы нанотехнологий в полиграфии: учебное пособие для студентов, обучающихся по направлениям: 29.03.03 Технология полиграфического и упаковочного производства; 22.03.01 Материаловедение и технологии материалов; 44.03.04 Профессиональное обучение (по отраслям). Ч. 4. Сканирующая зондовая микроскопия и другие методы диагностики запечатываемых материалов на микро- и наноуровне / А. Ф. Бенда, П. Ф. Поташников; М-во образования и науки РФ, ФГБОУ ВПО "Моск. гос. унтпечати имени Ивана Федорова". М.: МГУП имени Ивана Федорова, 2015. 136 с.
- 7. Головин, Ю.И. Введение в нанотехнику. [Электронный ресурс] Электрон.дан. М.: Машиностроение, 2007. 496 с. Режим доступа: http://e.lanbook.com/book/802

4.4 Электронные образовательные ресурсы

1. https://online.mospolytech.ru/course/view.php?id=10662

4.5 Лицензионное программное обеспечение

- 1. Microsoft Windows 10 Pro
- 2. Microsoft Office 2007
- 3. KasperskyAnti-Virus

4.6 Современные профессиональные базы данных и информационные справочные системы

- 1. Компьютерные информационно-правовые системы «Консультант» http://www.consultant.ru, «Гарант» http://www.garant.ru
 - 2. Официальный интернет-портал правовой информации http://pravo.gov.ru.
 - 3. Российская национальная библиотека http://www.nlr.ru4
 - 4. http://www.sciencedirect.com
 - 5. http://www.researchgate.com
 - 6. http://www.ammrf.org.au/myscopee
- 7. учебно-методические материалы в электронном виде, представленные на сайте http://lib.mami.ru/ebooks/ в разделе «Библиотека».
- 8. Единое окно доступа к образовательным ресурсам Федеральный портал http://window.edu.ru
 - 9. Научная электронная библиотека http://www.elibrary.ru
 - 10. Российская государственная библиотека http://www.rsl.ru

5 Материально-техническое обеспечение

Две специализированные учебные лаборатории кафедры «Инновационные материалы принтмедиатехнологии» Ауд. 1209, 1202 оснащенные световым микроскопом, ИКспектрометром.

- Специализированная учебная лаборатория кафедры «Инновационные технологии полиграфического и упаковочного производства» Ауд. 2702, оснащенные атомно-силовым микроскопом, профилометром.
- Специализированные научно-исследовательские лаборатории НТЦ «Полиграфические и инновационные технологии» ауд. 1037, 1038, 2202A, 1306, 2669, оснащенные сканирующим электронным микроскопом, рентгеновским фотоэлектронным спектрометром, устройствами обработки материалов в коронном разряде, в тлеющем разряде, пробопечатным устройством, устройством 3D-печати.

6 Методические рекомендации

6.1 Методические рекомендации для преподавателя по организации обучения

Преподавание теоретического (лекционного) материала по дисциплине «Материалы нанотехнологий» осуществляется на основе междисциплинарной интеграции и четких междисциплинарных связей в рамках образовательной программы и учебного плана по направлению 22.03.01 –Материаловедение и технологии материалов.

Рекомендуется широкое использование активных и интерактивных методов обучения, научной и справочной литературы при подготовке учебно-методических материалов, возможностей современных информационных технологий.

Перечень основной и дополнительной литературы и нормативных документов, необходимых в ходе преподавания дисциплины «Материалы нанотехнологий», приведен в п.4 настоящей рабочей программы.

6.2 Методические указания для обучающихся по освоению дисциплины

Получение углубленных знаний по дисциплине достигается за счет активной самостоятельной работы обучающихся. Выделяемые часы целесообразно использовать для знакомства с учебной и научной литературой по проблемам дисциплины, анализа научных концепций.

В рамках дисциплины предусмотрены различные формы контроля уровня достижения обучающимися заявленных индикаторов освоения компетенций. Форма текущего контроля – активная работа на лабораторных занятиях. Формой промежуточного контроля по данной дисциплине является экзамен, в ходе которого оценивается уровень достижения обучающимися заявленных индикаторов освоения компетенций.

Методические указания по освоению дисциплины.

<u>Лекционные занятия</u> проводятся в соответствии с содержанием настоящей рабочей программы и представляют собой изложение теоретических основ дисциплины.

Посещение лекционных занятий является обязательным.

Конспектирование лекционного материала допускается как письменным, так и компьютерным способом.

Регулярное повторение материала конспектов лекций по каждому разделу в рамках подготовки к текущим формам аттестации по дисциплине является одним из важнейших видов самостоятельной работы студента в течение семестра, необходимой для качественной подготовки к промежуточной аттестации по дисциплине.

Посещение лабораторных занятий и активное участие в них является обязательным.

Подготовка к лабораторным занятиям обязательно включает в себя изучение конспектов лекционного материала и рекомендованной литературы для адекватного понимания условия и способа решения заданий, запланированных преподавателем на конкретное лабораторное занятие.

7 Фонд оценочных средств

Таблица 1

Методы контроля и оценивания результатов обучения

7.1

Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины. Формы контроля формирования компетенций

дисциплины. Формы контроля формирования компетенции					
Код и наименование компетенций	Индикаторы достижения компетенции	Форма контроля	Этапы формирования (разделы дисциплины)		
ПК-1 Способен разрабатывать цифровые модели типовых технологических процессов и технологии материалов	ИПК- 1.2. Моделирует и разрабатывает этапы технологических процессов и составы материалов на основе анализа условий их эксплуатации и с учетом экономических факторов	Промежуточный контроль: зачет Текущий контроль: опрос на лабораторных занятиях, тестирование	Темы 1-8		
ПК -2 Способен использовать на практике знания о полимерных материалах различного назначения, выполнять исследования и испытания материалов	ИПК-2.1. Выполняет исследования и испытания материалов, изделий и процессов их производства	Промежуточный контроль: зачет Текущий контроль: опрос на лабораторных занятиях, тестирование	Темы 1-8		

Таблица 2

Перечень оценочных средств по дисциплине «Материалы нанотехнологий»

№ OC	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в ФОС
1	Отчет по лабораторной работе (ОЛР)	Продукт самостоятельной работы обучающегося, представляющий собой средство проверки умений применять полученные знания для решения поставленной задачи по заранее определенной методике и краткое изложение в письменном виде полученных результатов экспериментального и теоретического анализа определенной учебно-исследовательской темы.	Фонд лабораторных работ
2	Тестирование (Т)	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося	Фонд тестовых заданий
3	Зачет (3)	Средство контроля усвоения учебного материала дисциплины, организованное как учебное занятие в письменной форме с последующим собеседованием педагогического работника с обучающимися.	Вопросы по темам/разделам дисциплины

7.2 Шкала и критерии оценивания результатов обучения

1. Критерии оценки ответа на зачете

(формирование компетенции ПК-1, индикаторы ИПК-1.2)

(формирование компетенции ПК-2, индикаторы ИПК-2.1)

«зачтено»: обучающийся выполнил все виды учебной работы, предусмотренные учебным планом. Обучающийся демонстрирует соответствие знаний, умений, навыков приведенным в таблицах показателей, оперирует приобретенными знаниями, умениями, навыками, применяет их в ситуациях повышенной сложности. При этом могут быть допущены незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.

«не зачтено»: обучающийся не выполнил один или более видов учебной работы, предусмотренных учебным планом. Обучающийся демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателей, допускаются значительные ошибки, проявляется отсутствие знаний, умений, навыков по ряду показателей, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.

2. Критерии оценки работы обучающегося на лабораторных занятиях (отчет по лабораторным работам)

(формирование компетенции ПК-1, индикаторы ИПК-1.2)

(формирование компетенции ПК-2, индикаторы ИПК-2.1)

- **«5» (отлично):** выполнены все лабораторные работы, предусмотренные планом, и написаны по ним отчеты; обучающийся без ошибок сделал необходимые расчеты и грамотно написал выводы к работам.
- **«4» (хорошо):** выполнены все лабораторные работы, предусмотренные планом, и написаны по ним отчеты; обучающийся с корректирующими замечаниями преподавателя сделал необходимые расчеты и грамотно написал выводы к работам
- «3» (удовлетворительно): выполнены все лабораторные работы, предусмотренные планом, и написаны по ним отчеты; с замечаниями преподавателя обучающийся сделал необходимые расчеты и написал выводы к работам.
- **«2» (неудовлетворительно):** обучающийся не выполнил или выполнил неправильно лабораторные работы, предусмотренные планом; не написал по ним отчеты, не сделал необходимые расчеты и не написал выводы к работам.

3. Критерии оценки бланкового тестирования

(формирование компетенции ПК-1, индикаторы ИПК-1.2)

(формирование компетенции ПК-2, индикаторы ИПК-2.1)

Бланковое тестирование оценивается в соответствии с процентом правильных ответов, данных обучающимся на вопросы теста.

Стандартная шкала соответствия результатов тестирования выставляемой балльной оценке:

- «отлично» свыше 85% правильных ответов;
- «хорошо» от 70,1% до 85% правильных ответов;
- «удовлетворительно» от 55,1% до 70% правильных ответов;
- от 0 до 55% правильных ответов «неудовлетворительно»

Регламент тестирования включает:

- количество вопросов -33;
- продолжительность тестирования 45 минут;
- **«5» (отлично):** тестируемый демонстрирует системные теоретические знания, владеет терминами и обладает способностью быстро реагировать на вопросы теста.
- **«4» (хорошо):** тестируемый в целом демонстрирует системные теоретические знания, владеет большинством терминов и обладает способностью быстро реагировать на вопросы теста.
- «3» (удовлетворительно): системные теоретические знания у тестируемого отсутствуют, он владеет некоторыми терминами и на вопросы теста реагирует достаточно мелленно.
- **«2» (неудовлетворительно):** системные теоретические знания у тестируемого отсутствуют, терминологией он не владеет и на вопросы теста реагирует медленно.

7.3 Оценочные средства

7.3.1 Текущий контроль (отчет по лабораторным работам) (формирование компетенции ПК-1, индикаторы ИПК-1.2), (формирование компетенции ПК-2, индикаторы ИПК-2.1).

Тематика и методические указания по выполнению лабораторных работ по дисциплине изложены в учебно-методическом пособии по дисциплине [1,2].

- 7.3.2 Текущий контроль (тестирование) (формирование компетенции ПК-1, индикаторы ИПК-1.2), (формирование компетенции ПК-2, индикаторы ИПК-2.1).
 - 1. К наноразмерным аллотропным формам углерода относятся

Сажа

Графит

Графен

Карбин

2. В фуллеренах содержится

60 атомов углерода

70 атомов углерода

От 60 до 540 атомов углерода

Менее 60 атомов углерода

3. Фуллероиды – это

Кристаллы, состоящие из фуллеренов

Фуллерены с частично замещенными атомами углерода

Полимерная форма соединения фуллеренов

Химические соединения фуллеренов с другими элементами или комплексами

4. Хиральность углеродных нанотрубок определяет

Диаметр нанотрубок

Вторичную структуру

Дефектность нанотрубок

Электропроводность нанотрубок

7.3.3 Промежуточная аттестация (вопросы к зачету)

(формирование компетенции ПК-1, индикаторы ИПК-1.2), (формирование компетенции ПК-2, индикаторы ИПК-2.1)

- 1. Наноматериалы: общие понятия, классификация, методы получения.
- 2. Графен: структура, свойства, синтез, применение, в том числе в полиграфическом и упаковочном производстве.
 - 3. Просвечивающая электронная микроскопия.
- 4. Общие свойства нанообъектов, причины отличия свойств нанообъектов от объемных тел.
- 5. Нанотрубки: структура, свойства, синтез, применение, в том числе в полиграфическом и упаковочном производстве.
 - 6. Сканирующая электронная микроскопия.
 - 7. Углеродные наноматериалы: классификация, методы получения.
- 8. Квантовые точки: структура, свойства, синтез, применение, в том числе в полиграфическом и упаковочном производстве.
 - 9. Атомно-силовая микроскопия.

- 10. Полимерные наноматериалы, формирование наноструктур в процессе фазового разделения, свойства.
- 11. Фуллерены: структура, свойства, синтез, соединения, применение в том числе в полиграфическом и упаковочном производстве.
 - 12. Рентгеновская фотоэлектронная спектроскопия.
- 13. Полимерные композитные материалы с углеродными наноматериалами: разновидности, методы получения, свойства.
- 14. Наноглина: структура, разновидности, свойства монтмориллонита, синтез, применение, в том числе в полиграфическом и упаковочном производстве.
 - 15. Конфокальная микроскопия.
 - 16. Неорганические наноматериалы: классификация, методы получения, свойства.
- 17. Наноалмазы: структура, свойства, синтез, применение, в том числе в полиграфическом и упаковочном производстве.
- 18. Полимерные композитные материалы с неорганическими наноматериалами: разновидности, методы получения, свойства.
- 19. Наночастицы золота: структура, свойства, синтез, применение, в том числе в полиграфическом и упаковочном производстве.
 - 20. Объемные и поверхностные методы анализа поверхности твердых тел.
 - 21. Фотонные кристаллы: структура, свойства, методы получения.
 - 22. Масс-спектрометрия.

КОНТРОЛЬ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

- **ПК-1** Способен разрабатывать цифровые модели типовых технологических процессов и технологии материалов ИПК- 1.2. Моделирует и разрабатывает этапы технологических процессов и составы материалов на основе анализа условий их эксплуатации и с учетом экономических факторов.
 - 1. Блок-сополимеры формируют наноструктуры в результате

Макрофазного разделения;

Микрофазного разделения; +

Полимеризации;

Поликонденсации.

2. К поверхностным методам анализа относятся

Энерго-дисперсионный анализ;

Масс-спектрометрия;

Рентгеновская фотоэлектронная спектроскопия. +

- 3. Что такое энерго-дисперсионный микроанализ?
- 4. В чём отличие объемных и поверхностных методов анализа поверхности твердых тел?
- **ПК-2** Способен использовать на практике знания о полимерных материалах различного назначения, выполнять исследования и испытания материалов ИПК-2.1. Выполняет исследования и испытания материалов, изделий и процессов их производства.

1. К нанодисперсным материалам относятся

Частицы с размерами от 1 до 100 нм;

0-D структуры с размерами от 1 до 100 нм; +

Нанообъекты, диспергированные в матрице;

Протяженные нанообъекты.

2. Отличие свойств нанобъектов от объемных объектов того же состава связано с

Дискретностью наносред;

Большой поверхностной энергией;

Электромагнитным взаимодействием между нанообъектами;

Изменением соотношения поверхностных и объемных атомов. +

- 3. Назовите причины отличия свойств нанообъектов от объемных тел?
- 4. Наночастицы серебра: структура, свойства, синтез, применение.

Пример билета зачета

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Кафедра Инновационные материалы принтмедиаиндустрии Дисциплина Материалы нанотехнологий Направление подготовки 22.03.01—Материаловедение и технологии материалов Профиль «Цифровые технологии в материаловедении» форма обучения <u>очная</u>

БИЛЕТ № 1

- 1. Наноматериалы: общие понятия, классификация, методы получения.
- 2. Графен: структура, свойства, синтез, применение, в том числе в полиграфическом и упаковочном производстве.
 - 3. Просвечивающая электронная микроскопия.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ В РАБОЧЕЙ ПРОГРАММЕ НА 202 -202 УЧЕБНЫЙ ГОД

в раоочую прогр	амму вносятся следующие изменения:
Завелующий каф	едрой «Инновационные материалы принтмедиаиндустрии»
обродующий когр	/Г.О. Рытиков/
Директор ПИ	
	/ И.В. Нагорнова/