Документ подписан простой электронной подписью Информация о владельце:

ФИО: Максимов Алексей митимот ЕРСТВО НАУКИ И ВЫСШЕ ГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: федеральное учреждение высшего образования дата подписания: 24.05.2024 12:36:03
Уникальный программный ключ МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
8db180d1a3f02ac9e60521a5672742735c18b1d6 (МОСКОВСКИЙ ПОЛИТЕХ)

Полиграфический институт

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Инструментальные методы исследования, контроля и испытания материалов

Направление подготовки/специальность

22.04.01 Материаловедение и технологии материалов

Профиль/специализация

Технология композитов

Квалификация **магистр**

Форма обучения Очная

Москва, 2024 г.

Разработчик(и):

Доцент кафедры ИМП, к.х.н., доцент

Крюпо во—/Л.Ю. Крюкова/

Согласовано:

Заведующий кафедрой ИМП, к.ф.-м.н., доцент

/Г.О. Рытиков/

Руководитель образовательной программы д.т.н., профессор

профессор, д.т.н.

/А.П. Кондратов/

Содержание

- 1 Ошибка! Закладка не определена. 2 Ошибка! Закладка не определена.5 Ошибка! Закладка не определена.5 3 Ошибка! Закладка не определена.5 Ошибка! Закладка не определена.6 Ошибка! Закладка не определена. 3.3 Ошибка! Закладка не определена.10 3.4 3.5 1111 4 1111 4.1 1111 4.2 1111 4.3 1212 4.4 1212 4.5 1212 4.6 1212 5 Ошибка! Закладка не определена.13 Ошибка! Закладка не определена.13 6
- - 1313 6.1
 - Ошибка! Закладка не определена.14 6.2 Ошибка! Закладка не определена.15
 - 7.1 1515

7

- 7.2 Ошибка! Закладка не определена.15
- 7.3 Ошибка! Закладка не определена.18

1 Цели, задачи и планируемые результаты обучения по дисциплине

Основные цели освоения дисциплины:

- изучение принципов работы и определение возможностей использования современных инструментальных методов анализа состава, структуры и свойств полиграфических и упаковочных материалов и покрытий, явлений и процессов в них на различных стадиях их получения, обработки, переработки и эксплуатации;
- изучение методов и средств контроля материалов и сложных композиций из них.

Основные задачи освоения дисциплины:

- освоение практических навыков исследования материалов и процессов с использованием современных приборов, современных методов планирования и проведения исследовательских экспериментов, выбора необходимого набора методик и оборудования;
- приобретение навыков и умений проведения комплексных исследований полиграфических материалов с использованием комплекса современных инструментов и приборов, позволяющих проводить изучения структуры образцов на наноуровне.

В результате освоения дисциплины обучающиеся должны:

знать:

- основные фундаментальные знания, на которых основано современное испытательное оборудования и приборы;
- основные процессы полиграфии и закономерности, лежащие в их основе;
- основные принципы исследования и контроля материалов полиграфического и упаковочного производства;
- основные принципы оценки проблемных ситуаций на основе фундаментальных знаний в области организации полиграфического производства и материаловедения.

уметь:

- работать на основных испытательных приборах и оборудовании;
- выбирать методы научного исследования и проектирования материалов и конструкций;
- применять знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов;
- организовывать, выполнять экспериментальные исследования на современном уровне и анализировать их результаты, оценивать их достоверность и достаточность.

владеть:

- основными приемами эксплуатации оборудования и обработки получаемых результатов;
- основными методами испытаний и анализа материалов и процессов в области полиграфии, смежных областей;
- терминологией в области физических и физико-химических методов исследования, системного анализа.

Обучение по дисциплине «Инструментальные методы исследования, контроля и испытания материалов» направлено на формирование у обучающихся следующих компетенций:

Код и наименование компетенций	Индикаторы достижения компетенции			
ОПК-1	ИОПК-1.1. Организовывает, выполняет			
Способен решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов	экспериментальные исследования на современном уровне и анализирует их результаты.			
ПК-1 Способен осуществлять научные исследования в области материаловедения и технологии ма-	ИПК-1.1. Применяет знания при разработке моделей (карт) технологических процессов в области			

териалов, исходя из фундаментальных знаний и конкретных задач производства	материаловедения и технологии материалов; ИПК-1.2. Умеет выбирать методы научного исследова-
	ния и проектирования материалов и конструкций.

2 Место дисциплины в структуре образовательной программы

Дисциплина «Инструментальные методы исследования, контроля и испытания материалов» относится к обязательной части блока Б1.1 Дисциплины (модули).

Изучение данной дисциплины базируется на компетенциях, приобретенных обучающимися в рамках освоения программ бакалавриата.

Набор квалификаций, навыков и умений, полученных при изучении дисциплины, использованы освоении изучаемых параллельно должны при дисциплин «Материаловедение технологии композитов», «Материаловедческая экспертиза», «Математическое моделирование в материаловедении», «Средства, методы и системы управления качеством», «Методология выбора материалов и технологий производства композитов».

3 Структура и содержание дисциплины

Общая трудоемкость дисциплины «Инструментальные методы исследования, контроля и испытания материалов» составляет 6 зачетных единиц (216 часов).

3.1 Виды учебной работы и трудоемкость

№	Dur ywefyed nefety y	Количество	Семестры	
Π/Π	Вид учебной работы	часов	2	
1	Аудиторные занятия	72	72	
	В том числе:			
1.1	Лекции	18	18	
1.2	Семинарские/практические занятия	18	18	
1.3	Лабораторные занятия	36	36	
2	Самостоятельная работа	144	144	
	В том числе:			
2.1	Подготовка к занятиям (лекциям, лабораторным работам, практическим занятиям)	109	109	
2.2.	Подготовка к промежуточной аттестации	35	35	
3	Промежуточная аттестация			
	Экзамен		Экзамен	
	Итого	216	216	

3.2 Тематический план изучения дисциплины

		Трудоемкость, час						
			A					
№ п/п	Разделы/темы дисциплины	Все	Лек ции	Семи- нарские/ практи- ческие занятия	Лабо- ратор- ные заня- тия	Прак- тиче- ская подго- товка	Само- стоя- тель- ная рабо- та	
1	Тема 1. Предмет, цель, задачи дисциплины.	10	2				8	
2	Тема 2. Химические методы анализа.	21			8	4	9	
3	Тема 3. Хроматографические методы исследования состава и свойств материалов.	20	2		8	2	8	
4	Тема 4. Атомно-эмиссионный и атомно-абсорбционный метод анализа.	10	2				8	
5	Тема 5. Абсорбционная спектроскопия в видимой и УФ-областях.	19	2		8		9	
6	Тема 6. Люминесцентный метод.	10				2	8	
7	Тема 7. ИК-спектроскопия и спектроскопия комбинационного рассеяния (рамановская).	13	2			2	9	
8	Тема 8. Методы основанные на использовании рассеяния и преломления электромагнитного излучения.	17			8		9	
9	Тема 9. Оптические методы нераз- рушающего контроля.		2				8	
10	Тема 10. Резонансные методы.	13	2			2	9	
11	Тема 11. Масс-спектроскопия.	14	2			4	8	
12	Тема 12. Радиохимические методы исследования.	10				2	8	
13	Тема 13. Электрохимические мето- ды.	49	2		4		43	
	Итого	216	18		36	18	144	

3.3 Содержание дисциплины

Тема 1. Предмет, цель, задачи дисциплины

Предмет и содержание дисциплины. Терминология, применяемая в курсе. Взаимосвязь между строением вещества и проявляемыми физико-химическими свойствами. Изменения свойств элементов, используемых в анализе, а также соединений на их основе: растворимость, способность к комплексообразованию, окислительно-восстановительные свойства.

Методы исследования веществ — физические, химические и физико-химические. Классификация методов, их значение и преимущества. Чувствительность и селективность. Воспроизводимость определений. Методы определения концентрации в инструментальном анализе.

Тема 2. Химические методы анализа

Основные методы отбора проб. Понятие о концентрировании. Соосаждение. Законы Хлопина и Дернера-Хоскинса. Изоморфизм кристаллов. Экстракция, основные понятия и

приемы. Коэффициент распределения. Многократная экстракция. Количественные расчеты в соосаждении и экстракции.

Периодический закон Д.И. Менделеева и аналитическая классификация ионов. Систематический и дробный анализ. Специфический реагент. Классификация катионов и анионов. Схема качественного анализа. Групповой реагент. Специфическая реакция и специфический реагент. Способы повышения избирательности реакций: изменение рН раствора, маскировка мешающих ионов. Методы обнаружения ионов (образование осадков, окрашенных ионов, микрокристаллоскопические капельные реакции).

Гравиметрический анализ. Техника и расчеты в гравиметрическом анализе. Методы повышения точности гравиметрических определений. Практическое применение.

Титриметрия. Общая характеристика метода. Теория кислотно-основного титрования. Характеристика метода. Кривые титрования. Расчёт и построение кривых титрования в однокомпонентных системах. Скачек титрования и факторы, влияющие на него. Кислотно-основные индикаторы и теории их действия. Интервал перехода окраски индикатора. Выбор индикатора по кривым титрования. Прямое и обратное титрование.

Окислительно-восстановительное титрование. Характеристика метода. Перманганатометрия. Практическое применение.

Комплексонометрическое титрование. Теоретические основы. Характеристика метода. Практическое применение.

Тема 3. Хроматографические методы исследования состава и свойств материалов

Классификации хроматографических методов: по агрегатному состоянию подвижной и неподвижной фаз (газовая и жидкостная хроматографии), по способу перемещения подвижной фазы (колоночная и тонкослойная хроматографии), по сорбционным свойствам подвижной фазы (проявительная, вытеснительная и фронтальная хроматографии) и т.д. Основные понятия и определения: время удерживания, удерживаемый объем, селективность колонки и т.п. Хроматограммы. Носители и неподвижные фазы для газо-адсорбционной хроматографии и газо-жидкостной хроматографии. Понятие эффективности колонки и способы ее оценки и оптимизации. Влияние параметров хроматографирования на эффективность колонки.

Аппаратура для газовой хроматографии. Схема газового хроматографа: блок подготовки газов, термостат колонок, устройство ввода пробы, детектор, регистрирующий прибор (самописец). Основные хроматографические детекторы: ДТП, ПИД, ЭЗД, ПФД, ТИД.

Количественный и качественный хроматографический анализ. Методы абсолютной калибровки и внутреннего стандарта. Анализ смесей по временам удерживания и индексам удерживания веществ. Обращенная газовая хроматография, её применение для физико-химических исследований материалов и процессов.

Жидкостная хроматография (колоночная и плоскостная). Адсорбенты для жидкостной хроматографии. Выбор подвижной фазы, градиентная хроматография. Высокоэффективная жидкостная хроматография (ВЭЖХ). Практическое применение ЖАХ: хроматография низкомолекулярных веществ, олигомеров и полимеров.

Ионообменная хроматография. Классификация ионитов. Практическое применение.

Основные понятия бумажной (БХ) и тонкослойной хроматографии (ТСХ). Способы проведения хроматографии. Выбор подвижной фазы. Оценка разделительной способности и эффективности. Идентификация разделённых веществ. Количественный анализ.

Эксклюзионная хроматография (гель—хроматография). Материалы матриц и обменников. Гидрофильные и гидрофобные гели. Основной принцип гель-фильтрации. Выбор элюента. Эффективность разделения. Определение молекулярно-массового распределения полимеров.

Тема 4. Атомно-эмиссионный и атомно-абсорбционный анализ

Общая характеристика и классификация спектроскопических методов, основные этапы развития спектроскопии. Электромагнитное излучение, природа электромагнитного излучения, спектр электромагнитного излучения.

Взаимодействие излучения с веществом: поглощение, испускание, рассеяние. Основные законы поглощения и испускания света. Светорассеяние. Строение атома и происхождение

атомных спектров.

Основные источники энергии, приемники излучения. Качественный и количественный элементный анализ. Особенности и отличия атомно-адсорбционной и атомно-эмиссионной спектроскопии. Типовые приборы для атомной спектроскопии.

Тема 5. Абсорбционная спектроскопия в видимой и УФ-областях

Абсорбционная спектроскопия в видимой и УФ областях. Классификация и отнесение электронных переходов. Закон Бугера-Ламберта-Бера. Оптическая плотность и пропускание. Молярный коэффициент погашения. Закон аддитивности.

Монохроматизация излучения. Электронный спектр поглощения. Характеристики максимума поглощения в спектре. Анализ смеси веществ в растворе. Полосы в спектре как характеристики колебания фрагментов молекул.

Аппаратура: спектрофотометры и фотоэлектроколориметры. Применение электронных спектров поглощения в качественном, структурном и количественном анализах. Специфика электронных спектров поглощения различных классов соединений. Область спектра, используемая для идентификации веществ.

Тема 6. Люминесцентный метод

Виды люминесценции. Сущность метода. Законы люминесценции. Тушение флуоресценции. Связь интенсивности люминесценции и концентрации люминофора. Приборы для измерения люминесценции. Качественный и количественный анализ.

Тема 7. ИК-спектроскопия и спектроскопия комбинационного рассеяния (рамановская)

Квантово-механический подход к описанию колебательных спектров. Уровни энергии и их классификация. Фундаментальные, обертонные и составные частоты. Интенсивность полос колебательных спектров. Правила отбора и интенсивность в ИК поглощении и в спектрах КР. Частоты и формы нормальных колебаний молекул. Симметрия нормальных колебаний, координаты симметрии. Характеристичность нормальных колебаний. Ограничения концепции групповых частот. Применение методов колебательной спектроскопии для идентификации веществ, структурно-группового, молекулярного и количественного анализов. Специфичность колебательных спектров. Техника и методики ИК-спектроскопии и спектроскопии КР. Аппаратура для ИК-спектроскопии, приготовление образцов. Аппаратура для спектроскопии КР. Сравнение методов ИК и КР, их преимущества и недостатки.

Тема 8. Методы основанные на использовании рассеяния и преломления электромагнитного излучения

Электрические и оптические свойства молекул. Полярные и неполярные молекулы. Взаимодействие полярной молекулы с электростатическим полем. Дипольный момент. Поляризация диэлектрика. Электронная, атомная и ориентационная поляризация. Поляризация деформации. Уравнение Клаузиуса - Мосотти. Показатель преломления. Зависимость показателя преломления от плотности и поляризуемости вещества. Мольная, удельная рефракции. Уравнение Лорентц-Лорентца. Аддитивность молекулярной рефракции. Экзальтация мольной рефракции. Дисперсия света. Применение молекулярной рефракции и дисперсии для идентификации и установления строения молекул. Методы определения дипольного момента на основе измерения диэлектрической проницаемости, диэлькометрия.

Светорассеяние. Широкоугловое рассеяние света. Оптический фотометр. Лазерный фотометр. Определение молекулярной массы.

Тема 9. Оптические методы неразрушающего контроля

Методы оптического вида контроля: визуальный (дефектоскопия), визуально-оптический (дефектоскопия с помощью микроскопов, стереоскопия, эндоскопия), энтерферометрический (оптическая толщинометрия, контроль формы), поляризационный (контроль напряжений в прозрачных средах), фазоконтрастный (контроль оптической неоднородности прозрачных сред), рефлексометрический (контроль шероховатости поверхности изделий, измерение блеска и глянца), денситометрический (анализ оптической плотности прозрачных пленок),

колориметрический (анализ цвета изделий), голографический (контроль геометрии объектов сложной формы, однородности оптических сред).

Оптическая микроскопия. Принципиальная схема микроскопа. Микроскопия в проходящем и отраженном свете. Способы подготовки образцов. Варианты использования оптической микроскопии.

Просвечивающая электронная микроскопия. Зависимость разрешающей способности микроскопа от длины волны электрона. Принципиальная схема электронного микроскопа. Электронный микроскоп с атомным разрешением (ультрамикроскопия). Методы подготовки образцов. Тонкие пленки и срезы. Метод реплик. Оттененение и контрастирование. Примеры использования электронной микроскопии в исследовании материалов и покрытий. Электронная микроскопия для химического анализа. Электроннозондовый рентгеноспектральный микроанализ.

Сканирующая электронная микроскопия. Устройство электронного микроскопа. Подготовка образцов. Области применения растровой электронной микроскопии.

Тема 10. Резонансные методы

Физические основы явления ядерного магнитного резонанса. Снятие вырождения спиновых состояний в постоянном магнитном поле. Условие ядерного магнитного резонанса. Схема спектрометра ЯМР. Химический сдвиг и спин-спиновое расщепление в спектрах ЯМР. Константа экранирования ядра. Относительный химический сдвиг, его определение и использование в химии. Протонный магнитный резонанс. Метод двойного резонанса. Применение спектров ЯМР при исследовании материалов и процессов. Техника и методика эксперимента. Преобразование Фурье и получение спектров ЯМР. Спектроскопия углерода С¹³. Сравнение метода ЯМР с другими методами, его достоинства и ограничения.

Метод ЭПР. Принципы спектроскопии электронного парамагнитного резонанса. Условие ЭПР, g-фактор и его значение. Сверхтонкое расщепление сигнала ЭПР при взаимодействии с одним и несколькими ядрами. Применение метода ЭПР при исследовании материалов и процессов. Парамагнитные металлы как примеси в композиционных материалах.

Тема 11. Масс-спектроскопия

Методы ионизации: электронный удар, фотоионизация, химическая ионизация и др. Комбинированные методы. Ионный ток и сечение ионизации. Зависимость сечения ионизации от энергии ионизирующих электронов. Потенциалы появления ионов. Типы ионов в масс-спектрометрах - молекулярные, осколочные, метастабильные, многозарядные. Масс-спектрометры с отклонением под действием магнитного поля, приборы с двойной фокусировкой, времяпролетные масс-спектрометры. Разрешающая сила масс-спектрометра. Применение масс-спектроскопии. Идентификация вещества. Таблицы массовых чисел. Соотношение изотопов. Корреляции между молекулярной структурой и масс-спектрами. Хромато-масс-спектроскопия.

Тема 12. Радиохимические методы исследования

Основные виды радиоактивного распада. Механизмы радиационно-химических процессов. Способы регистрации радиационно-химических превращений. Основы химической дозиметрии. Дозиметры на основе полимерных материалов

Активационный анализ. Методы радиоактивных меток. Радио-спектральный анализ. Рентгенофлуоресцентный метод.

Тема 13. Электрохимические методы

Теоретические основы. Обратимые и необратимые электрохимические процессы. Классификация и взаимосвязь электрохимических методов.

Потенциометрия. Сущность потенциометрии. Механизм электродных процессов и ЭДС гальванических элементов. Характеристика электродов.

Прямая и косвенная потенциометрия. Потенциометрический анализ. Ионометрия. Кривые потенциометрического титрования. Способы определения конечной точки титрования (расчётные, графические). Аппаратура.

Кондуктометрия. Общая характеристика кондуктометрии. Теоретические основы метода. Электрическая проводимость и ее изменение: зависимость от концентрации электролита, разбавления, температуры. Уравнение Кольрауша.

Кондуктометрия. Теоретические основы метода. Классификация методов кондуктометрии. Кондуктометрическое титрование. Кривые кондуктометрического титрования. Использование кондуктометрических датчиков в хроматографии и других методах исследования.

Кулонометрия. Теоретические основы метода. Электролиз. Законы Фарадея. Кулонометрическая ячейка. Прямая и косвенная кулонометрия. Типы электродов. Использование кулонометрии в анализе следовых количеств веществ и других методах исследования.

Использование характеристик вольтамперограмм для исследования органических и неорганических соединений. Классическая, осциллографическая, импульсная и переменнотоковая полярография. Каталитические и адсорбционные токи. Применение инверсионной вольтамперометрии для исследования объектов. Прямые и косвенные вольтамперометрические методы.

3.4 Тематика семинарских/практических и лабораторных занятий

3.4.1 Семинарские/практические занятия

№ п/п	№ раздела дисциплины, темы	Тематика практических занятий (семинаров)	Трудо- емкость, (час.)
1	Тема 2.	Практическая реализация приемов подготовки образцов для анализа. Методология обсчета полученных результатов.	2
2	Тема 2.	Практическая реализация приемов осаждения и соосаждения веществ. Методология обсчета полученных результатов.	2
3	Тема 3.	Практическая реализация газовой хроматографии. Методология обсчета полученных результатов.	2
4	Тема 6.	Практическая реализация люминесцентного метода анализа. Методология обсчета полученных результатов.	2
5	Тема 7.	Методология расшифровки ИК-спектров органических соединений.	2
6	Тема 10.	Методология расшифровки ЯМР-спектров сложных органических соединений.	2
7	Тема 11.	Установление структуры химических соединений по их ИК-, ЯМР и масс-спектрам.	4
8	Тема 12.	Практическая реализация радиометрических методов анализа. Методология обсчета полученных результатов.	2
Итого			18

3.4.2 Лабораторные занятия

№ п/п	№ раздела дисциплины, темы	Тематика лабораторных занятий	Трудо- емкость, (час.)
1	Тема 2	Освоение методик качественного химического анализа.	8
2	Тема 3.	Количественное определение ионов никеля в растворе методом восходящей бумажной хроматографии.	4
3	Тема 3	Практическая реализация ионообменной хроматографии. Методология обсчета полученных результатов.	4
4	Тема 5.	Освоение методик обработки результатов фотоколориметрических измерений методом сравнения и методом градуировочного графика.	4
5	Тема 5.	Фотоколориметрическое определение хрома и марганца при их совместном присутствии в растворе.	4
6	Тема 8.	Идентификация соединения по его показателю преломления и плотности.	4
7	Тема 8	Определение концентрации веществ в растворе методом рефрактометрии.	4
8	Тема 13	Освоение методики потенциометрического титрования. Методология обсчета полученных результатов.	4
Итого			36

3.5 Тематика курсовых проектов (курсовых работ)

Курсовой проект (курсовая работа) не предусмотрен.

4 Учебно-методическое и информационное обеспечение

4.1 Нормативные документы и ГОСТы

- 1. Федеральный закон 184-ФЗ от 27.12.2001 г. «О техническом регулировании» с дополнениями и разъяснениями Федеральных законов «О внесении изменений в Федеральный закон «О техническом регулировании» от 01.05. 2007 г. № 65-ФЗ, 21.07.2011 г. №255-ФЗ, 23.06.2014 г. №160-ФЗ, 05.04.2016 г. №104-ФЗ, который вступил в силу с 01.01.2021 г.
- 2. Стандарт ГОСТ 3.1109 «Единая система технологической документации».
- 3. Стандарт ГОСТ Р 8.000-2015 «Государственная система обеспечения единства измерений».
- 4. Стандарт ГОСТ 8.057-80 «ГСИ. Эталоны единиц физических величин».
- 5. Стандарт ГОСТ Р 50779-2000 «Статистические методы. Статистическое управление качеством. Термины и определения».
- 6. Стандарт ГОСТ 18353-79 «Контроль неразрушающий».
- 7. Стандарт ГОСТ 53696-2009 «Контроль неразрушающий».

4.2 Основная литература

- 1. Конюхов, В.Ю. Методы исследования материалов и процессов: учебное пособие / В.Ю. Конюхов, Гоголадзе И.А., З.В. Псху З.В.; М-во образования и науки РФ, Федеральное агентство по образованию, МГУП. М.: МГУП. 2007. 226 с.
- 2. Сараева С.Ю., Иванова А.В., Козицина А.И. Химические и инструментальные методы анализа; учебное пособие; М-во образования и науки РФ, Урал. федер. ун-т. Екатеринбург: Урал. ун-т. 2021.-216 с.

- 3. Дмитриевич И.Н., Пругло Г.Ф., Федорова О.В., Комиссаренков А.А. Физико-химические методы анализа. Ч.Ш. Хроматографические методы анализа: учебное пособие; СПб: СПб ГТУРП. 2014. 53 с.
- 4. Гиндуллина Т.М. Хроматографические методы анализа: учебно-методическое пособие / Гиндуллина Т.М., Дубова Н.М.; Томск: Томский политехнический ун-т. 2010. 80 с.
- 5. Сальникова Е.В. Инструментальные методы анализа. Теоретические основы и практическое применение: учебное пособие; Оренбург: Оренбургский гос. ун-т. 2017. 121 с.
- 6. Харитонов Ю.Я. Аналитическая химия. Количественный анализ, физико-химические методы анализа: Практикум / Харитонов Ю.Я., Джабаров Д.Н., Григорьева В.Ю. М.: ГЭОТАР-Медиа. 2012.-368 с.

4.3 Дополнительная литература

- 1. Дивин А.Г. Методы и средства измерений, испытаний и контроля. Часть 4. Методы и средства измерения состава и свойств веществ. / Дивин А.Г., Пономарев С.В. Тамбов: Тамбовский государственный технический университет, ЭБС АСВ. 2014. 104 с.
- URL: https://www.iprbookshop.ru/63865.html
- 2. Васильев, В.П. Аналитическая химия: В 2-х кн.: учебник для вузов. Кн.2. Физико-химические методы анализа / В.П. Васильев. 2-е изд., перераб., доп. М.: Дрофа. 2002. $383\ c$
- 3. Гришаева Т.И. Методы люминесцентного анализа: учебное пособие. СПб: АНО НПО «Профессионал». 2003. 226 с.

https://rusneb.ru/catalog/000200_000018_RU_NLR_bibl_557442_/

- 4. Фарус, О.А. Физические и физико-химические методы анализа. Лабораторный практикум: учебно-методическое пособие [Электронный ресурс] / О.А. Фарус, Г.И. Якушева. М. Берлин: Директ-Медиа. 2015. 78 с.
- URL: http://www.knigafund.ru/books/185089

4.4 Электронные образовательные ресурсы

Интернет-ресурсы включают учебно-методические материалы в электронном виде, представленные на сайте http://mospolytech.ru в разделе Электронная библиотека http://elib.mgup.ru.

4.5 Лицензионное и свободно распространяемое программное обеспечение

1. Программные продукты Microsoft Office.

4.6 Современные профессиональные базы данных и информационные справочные системы

- 1. Химический ресурс в интернете. http://www.primchem.narod.ru/sites.html
- 2. Образовательный ресурс Интернета. XИМИЯ. http://www.alleng.ru./edu/chem.htm
- 3. Научная электронная библиотека // Электронный ресурс [Режим доступа: свободный] http://elibrary.ru/defaultx.asp
- 4. Научная соцсеть www.Science-Community.org
- 5. Федеральная университетская компьютерная сеть России // Электронный ресурс [Режим доступа: свободный] http://www.runnet.ru/
- 6. Профессиональная поисковая система Science Direct //Электронный ресурс [Режим доступа: свободный] http://www.sciencedirect.com/
- 7. Электронно-библиотечная система «Лань» Электронный ресурс [Режим доступа: авторизованный] http://e.lanbook.com/

5 Материально-техническое обеспечение

- 1. Лекционные аудитории общего фонда, оснащенные учебной мебелью, доской, переносным/стационарным компьютером и проектором, расположенные в учебном корпусе № 1 по адресу г. Москва, ул. Прянишникова, д. 2а, ауд. 1013, 1014 или в лабораторных помещениях ауд.1202, 1207, 1208, 1209, 1303.
- 2. Аудитории для проведения практических занятий общего фонда, оснащенные учебной приборами, используемыми лабораторных работах: мебелью, доской, фотоэлектроколориметры КФК, хроматограф газовый «Цвет-800», хроматограф газовый 5000», ИК-Фурье спектрометр «ФТ-801», «Хроматек-кристалл спектрометр атомноабсорбционный типа МГА-95, электронный сканирующий микроскоп, атомно-силовой микроскоп, рефрактометры. Лаборатории дружественных организаций, способные проводить исследования по изучаемым физико-химическим методам.
- 3. Компьютерный класс для самостоятельной работы обучающихся, помещения читальных залов библиотек и аудиторий 1305, 1204.

6 Методические рекомендации

6.1 Методические рекомендации для преподавателя по организации обучения

Методика преподавания дисциплины «Инструментальные методы исследования, контроля и испытания материалов» и реализация компетентностного подхода в изложении и восприятии материала предусматривает использование следующих активных и интерактивных форм проведения групповых, индивидуальных аудиторных занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся:

- проведение занятий лекционного типа;
- подготовка к выполнению практических и лабораторных работ;
- решение задач;
- дискуссии, обсуждение выбора метода исследования, контроля и испытания материалов;
- подготовка и выполнение контрольных работ в аудиториях вуза;
- организация и проведение текущего контроля знаний обучающихся в форме контрольных работ.

При проведении лекционных, практических и лабораторных занятий, текущей и промежуточной аттестации по дисциплине «Инструментальные методы исследования, контроля и испытания материалов» целесообразно использовать следующие образовательные технологии:

- 1. По ряду разделов дисциплины предусмотрено проведение контрольной работы.
- 2. На лабораторных и практических занятиях для решения аналитических задач использовать отраслевые нормативные документы, что позволяет формировать навыки практической работы в реальных условиях.
- 3. Проведение ряда лекционных занятий, содержащих таблицы и рисунки в качестве иллюстраций рассматриваемого материала, необходимо осуществлять с использованием слайдов, подготовленных в программе Microsoft Power Point.

6.2 Методические указания для обучающихся по освоению дисциплины

Получение углубленных знаний по дисциплине достигается за счет активной самостоятельной работы обучающихся. Выделяемые часы целесообразно использовать для

знакомства с учебной и научной литературой по проблемам дисциплины, анализа научных концепций.

В рамках дисциплины предусмотрены различные формы контроля уровня достижения обучающимися заявленных индикаторов освоения компетенций. Форма текущего контроля – активная работа на практических и лабораторных занятиях, письменные контрольные работы. Формой промежуточного контроля по данной дисциплине является экзамен, в ходе которого оценивается уровень достижения обучающимися заявленных индикаторов освоения компетенций.

Методические указания по освоению дисциплины.

<u>Лекционные занятия</u> проводятся в соответствии с содержанием настоящей рабочей программы и представляют собой изложение теоретических основ дисциплины.

Посещение лекционных занятий является обязательным.

Конспектирование лекционного материала допускается как письменным, так и компьютерным способом.

Регулярное повторение материала конспектов лекций по каждому разделу в рамках подготовки к текущим формам аттестации по дисциплине является одним из важнейших видов самостоятельной работы студента в течение семестра, необходимой для качественной подготовки к промежуточной аттестации по дисциплине.

Проведение <u>практических занятий</u> по дисциплине «Инструментальные методы исследования, контроля и испытания материалов» осуществляется в следующих формах:

- анализ правовой базы, регламентирующей применение инструментальных методов исследования, контроля и испытания материалов», опрос по материалам, рассмотренным на лекциях и изученным самостоятельно по рекомендованной литературе;
- решение типовых расчетных задач по темам;
- анализ и обсуждение практических ситуаций по темам.

Посещение практических занятий и активное участие в них является обязательным.

Подготовка к практическим занятиям обязательно включает в себя изучение конспектов лекционного материала и рекомендованной литературы для адекватного понимания условия и способа решения заданий, запланированных преподавателем на конкретное практическое занятие.

Проведение лабораторных работ по дисциплине «Инструментальные методы исследования, контроля и испытания материалов» осуществляется в следующих формах:

- -анализ правовой базы, регламентирующей применение инструментальных методов исследования, контроля и испытания материалов», опрос по материалам, рассмотренным на лекциях и изученным самостоятельно по рекомендованной литературе;
 - -анализ и выполнение экспериментальной работы;
 - -решение типовых расчетных задач по темам.

Посещение лабораторных занятий и активное участие в них является обязательным.

<u>Методические указания по выполнению различных форм внеаудиторной самостоятельной</u> работы.

<u>Изучение основной и дополнительной литературы</u>, а также <u>нормативно-правовых документов</u> по дисциплине проводится на регулярной основе в разрезе каждого раздела в соответствии с приведенными в п.7 рабочей программы рекомендациями для подготовки к промежуточной аттестации по дисциплине «Инструментальные методы исследования, контроля и испытания материалов». Список основной и дополнительной литературы и обязательных к изучению нормативно-правовых документов по дисциплине приведен в п.4 настоящей рабочей программы. Следует отдавать предпочтение изучению нормативных документов по соответствующим разделам дисциплины по сравнению с их адаптированной интерпретацией в учебной литературе.

<u>Решение задач</u> в разрезе разделов дисциплины «Инструментальные методы исследования, контроля и испытания материалов» является самостоятельной работой обучающегося в форме

домашнего задания в случаях недостатка аудиторного времени на практических занятиях для решения всех задач, запланированных преподавателем, проводящим практические занятия по дисциплине.

Методические указания по подготовке к промежуточной аттестации.

Промежуточная аттестация по дисциплине «Инструментальные методы исследования, контроля и испытания материалов» проходит в форме экзамена. Примерный перечень вопросов к экзамену и критерии оценки ответа обучающегося на экзамене для целей оценки достижения заявленных индикаторов сформированности компетенций приведены в составе ФОС по дисциплине в п.7 рабочей программы.

Обучающийся допускается к промежуточной аттестации по дисциплине независимо от результатов текущего контроля.

7. Фонд оценочных средств

7.1 Методы контроля и оценивания результатов обучения

Сформированность компетенций при изучении дисциплины определяется посредством оценки соответствия ответов и/или выполнения заданий заявленным индикаторам в рамках мероприятий текущего контроля и промежуточной аттестации (экзамена).

7.2 Шкала и критерии оценивания результатов обучения

7.2.1 Критерии оценки ответа на экзамене

(формирование компетенций ПК-1, ОПК-1)

«5» (отлично): обучающийся демонстрирует системные теоретические знания, практические навыки, владеет терминами, делает аргументированные выводы и обобщения, приводит примеры, показывает свободное владение монологической речью и способность быстро реагировать на уточняющие вопросы.

Обучающийся на высоком уровне владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций;
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).

«4» (хорошо): обучающийся демонстрирует прочные теоретические знания, практические навыки, владеет терминами, делает аргументированные выводы и обобщения, приводит примеры, показывает свободное владение монологической речью, но при этом делает несущественные ошибки, которые быстро исправляет самостоятельно или при незначительной коррекции преподавателем.

Обучающийся хорошо владеет:

способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций;

- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- «3» (удовлетворительно): обучающийся демонстрирует неглубокие теоретические знания, проявляет слабо сформированные навыки анализа явлений и процессов, недостаточное умение делать аргументированные выводы и приводить примеры, показывает не достаточно свободное владение монологической речью, терминами, логичностью и последовательностью изложения, делает ошибки, которые может исправить только при коррекции преподавателем.

Обучающийся на удовлетворительном уровне владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций;
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- «2» (неудовлетворительно): обучающийся демонстрирует незнание теоретических основ предмета, отсутствие практических навыков, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминами, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить даже при коррекции преподавателем, отказывается отвечать на дополнительные вопросы.

Обучающийся не владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).

7.2.2 Критерии оценки работы обучающегося на практических занятиях (формирование компетенций ПК-1 ОПК-1)

«5» (отлично): выполнены все практические задания, предусмотренные практическими занятиями, обучающийся четко и без ошибок ответил на все контрольные вопросы, активно работал на практических занятиях.

Обучающийся на высоком уровне владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов;

организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).

«4» (хорошо): выполнены все практические задания, предусмотренные практическими занятиями, обучающийся с корректирующими замечаниями преподавателя ответил на все контрольные вопросы, достаточно активно работал на практических занятиях. Обучающийся хорошо владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- «З» (удовлетворительно): выполнены все практические задания, предусмотренные практическими занятиями с замечаниями преподавателя; обучающийся ответил на все контрольные вопросы с замечаниями.

Обучающийся на удовлетворительном уровне владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- **«2» (неудовлетворительно):** обучающийся не выполнил или выполнил неправильно практические задания, предусмотренные практическими занятиями; обучающийся ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы. Обучающийся не владеет:
- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
 - 7.2.3 Критерии оценки работы обучающегося на лабораторных работах (формирование компетенций ПК-1 ОПК-1)
- **«5» (отлично):** выполнены все лабораторные работы, предусмотренные программой, обучающийся четко и без ошибок ответил на все контрольные вопросы, активно работал на лабораторных занятиях.

Обучающийся на высоком уровне владеет:

- способностью осуществлять научные исследования в области материаловедения и

- технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК 1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- **«4» (хорошо):** выполнены все лабораторные работы, предусмотренные программой, обучающийся с корректирующими замечаниями преподавателя ответил на все контрольные вопросы, достаточно активно работал на лабораторных занятиях.

Обучающийся хорошо владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК 1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- «3» (удовлетворительно): выполнены все лабораторные, предусмотренные программой с замечаниями преподавателя; обучающийся ответил на все контрольные вопросы с замечаниями.

Обучающийся на удовлетворительном уровне владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК 1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- «2» (неудовлетворительно): обучающийся не выполнил или выполнил неправильно экспериментальные работы, предусмотренные программой; обучающийся ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Обучающийся не владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК 1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов;

организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).

7.2.4 Критерии оценки контрольной работы (формирование компетенций ПК-1, ОПК-1)

«5» (отлично): все задания контрольной работы выполнены без ошибок в течение отведенного на работу времени; работа выполнена самостоятельно, присутствуют собственные обобщения, заключения и выводы; отсутствуют орфографические и пунктуационные ошибки. Обучающийся на высоком уровне владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- «4» (хорошо): задания контрольной работы выполнены с незначительными замечаниями в полном объеме либо отсутствует решение одного задания; работа выполнена самостоятельно, присутствуют собственные обобщения, заключения и выводы; отсутствуют грубые орфографические и пунктуационные ошибки.

Обучающийся хорошо владеет:

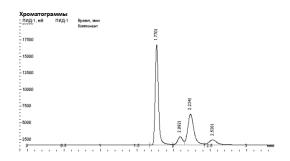
- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- «З» (удовлетворительно): задания контрольной работы имеют значительные замечания; работа выполнена самостоятельно, присутствуют собственные обобщения; присутствуют грубые орфографические и пунктуационные ошибки.

Обучающийся на удовлетворительном уровне владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).
- «2» (неудовлетворительно): задания в контрольной работе выполнены не полностью или неправильно; отсутствуют или сделаны неправильно выводы и обобщения; присутствуют грубые орфографические и пунктуационные ошибки. Обучающийся не владеет:

- способностью осуществлять научные исследования в области материаловедения и технологии материалов, исходя из фундаментальных знаний и конкретных задач производства; применяет знания при разработке моделей (карт) технологических процессов в области материаловедения и технологии материалов (ПК-1), умеет выбирать методы научного исследования и проектирования материалов и конструкций.
- способностью решать производственные и (или) исследовательские задачи, на основе фундаментальных знаний в области материаловедения и технологии материалов; организовывать, выполнять экспериментальные исследования на современном уровне и анализирует их результаты (ОПК-1).

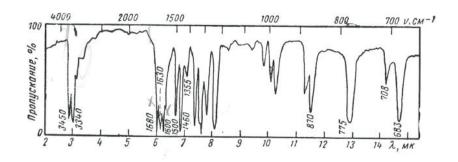
7.3 Оценочные средства

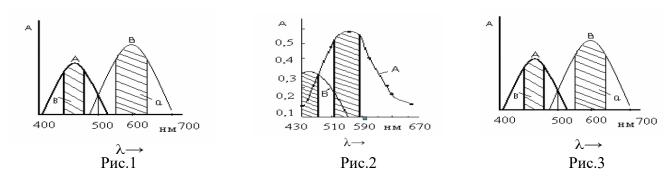

7.3.1 Текущий контроль (работа на лабораторных работах и практических занятиях) Примеры задач и практических ситуаций для рассмотрения на практических занятиях.

Формирование компетенции ПК-1:

- 1. Определить можно ли добиться 99 % извлечения растворенного вещества с константой распределения 20 в результате: а) однократной обработки 100,0 мл водного раствора этого вещества 25,0 мл бензола; б) трехкратной такой же обработки?
- 2. Исследуется смесь бензола, гексана и толуола неизвестного состава. Для хроматографического анализа к 50 г смеси добавили некоторое количество этанола. Хроматографирование смеси производилось на газовом хроматографе «Кристалл 5000.1» с пламенно-ионизационным детектором. Порядок выхода пиков на хроматограмме: этанол, гексан, бензол, толуол. Мертвое время t₀=0.2мин. Определите состав смеси бензола, гексана и толуола методом внутренней нормализации.

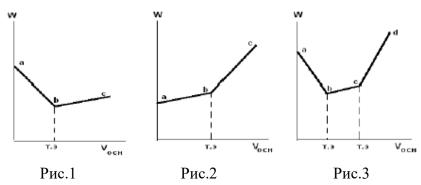
Расчет по компонентам

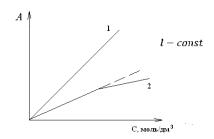

Время.	Компонент	Группа	Площадь	Высота	Концентрация	Ед.	Детектор
мин						концентрации	
1,770	Этанол		48053,687	15166,515			ПИД-1
2,092	Гексан		6369,471	1259,353			ПИД-1
2,234	Бензол		28259,079	4702,165			ПИД-1
2,538	Толуол		8196,963	804,909			ПИД-1


2. При анализе пробы массой 0,9816 г на содержание кобальта хемилюминесцентным фотографическим методом на одну фотопластинку снимали свечение пробы анализируемого раствора, стандартов и холостого опыта. В ячейки кюветы помещали по 0,5 мл раствора соли кобальта, прибавляли салицилат натрия (для устранения мешающего действия катионов меди и железа) и одинаковое количество пероксида водорода. Затем кювету выдерживали до полного прекращения свечения, пластинку фотометрировали на микрофотометре МФ-2.

Значение степени почернения пластинки ΔS стандартных растворов, содержащих 4,0; 8,0; 12,0; 16,0 мкг/мл кобальта, составили 0,17; 0,28; 0,40; 0,51 соответственно. Вычислить массовую долю (%) кобальта в пробе, если $\Delta S_x = 0,20$.

- 3. Определить содержание V в препарате по его естественной β -активности, если зарегистрированная активность препарата I=60 имп/с, эффективность счета I=0.3. На долю β -излучения приходится 75% всех распадов. Содержание ⁵⁰V в природной смеси составляет 0.24%, период его полураспада $T_{1/2}$ $6 \cdot 10^{15}$ лет.
- 4. Какие структурные элементы можно определить в соединении C_8H_9ON , спектр от которого приведен на рис. (в пластинке KBr).


- 5. Для соединения $C_4H_8O_2$ предложите структуру, которая согласуется с приведенными данными спектроскопии 1H ЯМР: 1.21 (c, 3H), 1,93 (c, 3H), 4.03 (кв, 2H).
- 6. По спектрам поглощения в видимой области приведенным на рис.1-3 определите в каких случаях можно проводить фотоколориметрическое определение концентрации пигментов А и В при их совместном присутствии в растворе.


Формирование компетенции ОПК-1:

- 1. Какой тип ионита, с какой ионогенной группой ($SO_3^-H^+$ или $NR_3^+OH^-$) Вы рекомендуете применить для анализа растворов, содержащих соли железа?
- 2. Укажите, какое из нижеперечисленных выражений характеризует связь между коэффициентом пропускания (T, %) и оптической плотностью (A): 1) $A = 2 \ln T$; 2) $A = 2 \lg T$; 3) $A = \lg T$; 4) $A = 2 \cdot \lg T$.
- 3. В чем заключаются метод сравнения и градуировочного графика? Почему при серийных определениях целесообразнее использовать метод градуировочного графика?
- 4. Укажите, какие кривые кондуктометрического титрования, приведенные на рис.1-3, относятся к титрованию: сильной кислоты, слабой кислоты, смеси сильной и слабой кислот сильным

основанием.

5. На рисунке приведены графики зависимости А от С при данной длине волны. Определите для какого раствора можно проводить количественный анализ методом фотоколориметрии.

6. В таблице приведены результаты измерения квантового выхода флуоресценции органолюминофора X с увеличением его концентрации в водном растворе:

$Cx*10^4$, M	1,00	3,00	5,00	7,00	9,00	11,00	13,00	15,00
$B_{\scriptscriptstyle KB}$	0.901	0.899	0.900	0,571	0,353	0,232	0,141	0,090

Как можно интерпретировать полученные результаты? Из графика $B_{\kappa B} = f(Cx)$ определите концентрационный барьер.

7.3.2 Промежуточная аттестация (экзамен)

(формирование компетенций ПК-2, ОПК-1)

Примерные вопросы к экзамену.

- 1. Классификация методов анализа. Выбор метода анализа. Этапы анализа.
- 2. Метод и методика анализа. Аналитический сигнал.
- 3. Зависимость аналитического сигнала от состава пробы. Приемы определения аналитического сигнала.
- 4. Основные этапы и приемы пробоподготовки.
- 5. Классификация методов соосаждения.
- 6. Закон Хлопина и условия его соблюдения. Изоморфизм. Коэффициент кристаллизации.
- 7. Особенности химических методов анализа. Качественный и количественный анализ.
- 8. Классификация хроматографических методов анализа. Теория адсорбции.
- 9. Основные хроматографические параметры. Требования к идеальной ПФ в ГЖХ.
- 10. Влияние параметров хроматографирования на эффективность разделения. Уравнение Ван-Леемтера.
- 11. Количественный хроматографический анализ. Методы абсолютной калибровки и внутреннего стандарта.
- 12. Жидкостная хроматография. Особенности реализации и область применения.

- 13. Основные характеристики электромагнитного излучения (ЭМИ). Классификация спектральных методов.
- 14. Атомарные спектры эмиссионные и адсорбционные. Теория, принципы реализации и применимость.
- 15. Основные закономерности поглощения ЭМИ. Закон Бугера-Ламберта-Бера.
- 16. Электронные спектры. Роль и место УФ-Вид спектроскопии.
- 17. Колебательные спектры. Валентные и деформационные колебания. Приемы получения ИКспектров.
- 18. Спектроскопия ядерного магнитного резонанса. Основные теоретические предпосылки.
- 19. Химический сдвиг. Влияние структуры молекулы на величину химического сдвига.
- 20. Спектры ЯМР второго порядка. Спин-спиновое расщепление, применение для тонкого анализа структуры.
- 21. Основные отличительные особенности ЯМР-спектров ядер ¹³С.
- 22. Структурная масс-спектрометрия. Основные принципы и методы реализации. Основные узлы прибора.
- 23. Молекулярный ион, способы его получения и расшифровки.
- 24. Основные правила, определяющие направления фрагментации в масс-спектрах.
- 25. Особенности реализации гибридных методов ГХ-МС.
- 26. Методы основанные на использовании рассеяния и преломления электромагнитного излучения.
- 27. Люминесцентный метод анализа. Сущность метода. Законы люминесценции.
- 28. Методы основанные на использовании рассеяния и преломления электромагнитного излучения.
- 29. Оптические методы неразрушающего контроля. Задачи, выбор метода.
- 30. Основные виды радиоактивного распада. Закон радиоактивного распада и его параметры.
- 31. Теоретическое обоснование альфа- и гамма-спектрометрии и их преимущества.
- 32. Количественный анализ элементов по их естественной радиоактивности.
- 33. Рентгено-флуоресцентный анализ. Принципы проведения и получаемые результаты.
- 34. Активационный анализ. Принципы реализации и получаемая информация. Абсолютный и относительный методы активационного анализа.
- 35. Электрохимические методы анализа. Электрохимическая ячейка. Основные принципы реализации.
- 36. Электроды сравнения и индикаторные. Мембранные и металлические электроды.
- 37. Потенциометрическое титрование. Ионометрия.
- 38. Кондуктометрия. Принципы организации и применение.
- 39. Прямая и косвенная кулонометрия. Законы Фарадея.
- 40. Вольтамперометрия. Полярографическая ячейка. Полярограммы.