Документ подписан простой электронной подписью

Информация о владельце: МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФИО: Максимов Инфессивористви

Должность: директор департамента по образовательной полифЕДЕРАЦИИ

Дата подписания: 2 Федератыное государственное автономное образовательное учреждение

Уникальный программный ключ: высшего образования

8db180d1a3f02ac9e60521a567A767E769BC1KUЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Литейные сплавы

Наименование программы бакалавриата (профиль) «Комплексные технологические процессы и оборудование машиностроения»

> Направление подготовки 15.03.01 «Машиностроение»

Квалификация (степень) выпускника Бакалавр

> Форма обучения Очно-заочная

Программа составлена в соответствии с требованиями $\Phi \Gamma OC$ ВО и учебным планом по направлению подготовки 15.03.01 «Машиностроение» профиль подготовки «Комплексные технологические процессы и оборудование машиностроения»

Программу составили:

доцент, к.т.н., В.В. Солохненко

Horion

доцент, к.т.н., А.А. Пономарев

Программа дисциплины «Литейные сплавы» по направлению подготовки 15.03.01 «Машиностроение» утверждена на заседании кафедры «Машины и технологии литейного производства»

Заведующий кафедрой

/Солохненко В.В.

Программа согласована с руководителем образовательной программы «Комплексные технологические процессы и оборудование машиностроения» по направлению подготовки 15.03.01 «Машиностроение»

Программа утверждена на заседании учебно-методической комиссии факультета машиностроения

- Heelluf

Председатель комиссии

Васильев А.Н./

«13» сентября 2022 г. Протокол:14-22

1. Цели освоения дисциплины.

Дисциплина «Литейные сплавы» относится к числу учебных дисциплин, формирующих специальные профессиональные навыки по направлению 15.03.01 «Машиностроение» и профилю подготовки «Комплексные технологические процессы и оборудование машиностроения».

Целью дисциплины является приобретение студентами знаний о свойствах литейных сплавов, теоретических основах их кристаллизации и плавления, а также практических навыков по определению технологических (литейных) свойств, наиболее распространенных литейных сплавов для изготовления машиностроительных изделий.

2. Место дисциплины в структуре ООП бакалавриата.

Дисциплина «Литейные сплавы» относится к Блоку 1 элективных дисциплин части, формируемой участниками образовательных отношений основной образовательной программы бакалавриата.

3. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы.

В результате освоения дисциплины (модуля) у обучающихся формируются следующие компетенции и должны быть достигнуты следующие результаты обучения, как этап формирования соответствующих компетенций:

Код компете нции	В результате освоения образовательной программы обучающийся должен обладать	Перечень планируемых результатов обучения по дисциплине
ПК-1	Способен разрабатывать технологические процессы изготовления машиностроительных изделий средней сложности серийного (массового) производства	Знаем: - Параметры и режимы технологических процессов изготовления машиностроительных изделий средней сложности серийного (массового) производства; - Причины дефектов при изготовлении машиностроительных изделий средней сложности серийного (массового) производства Умеем: - Устанавливать по марке материала технологические свойства материалов машиностроительных изделий средней сложности серийного (массового) производства Владеем: - Назначение технологических режимов технологических операций изготовления машиностроительных изделий средней сложности серийного (массового) производства

4. Структура и содержание дисциплины.

Общая трудоемкость дисциплины составляет 3 зачетных единиц, 108 академических часов (из них 72 – самостоятельная работа студентов).

В седьмом семестре: лекции -26 часов в семестр, семинарские (практические) занятия -10 часов в семестр, форма контроля - зачет.

Содержание разделов дисциплины:

Введение.

Цели и задачи дисциплины. Место и роль дисциплины в общей структуре подготовки специалистов, связь с другими дисциплинами. Основные понятия дисциплины «Литейные сплавы». Литейные сплавы, как конструкционные материалы в машиностроении.

Теория плавления и кристаллизации металлов и сплавов.

Процессы плавления и кристаллизации металлов и сплавов. Строение и свойства жидкого металла. Понятия кристаллизации и затвердевания. Формирование литой структуры отливки и физико-механических свойств сплава. Способы управления кристаллической структурой отливки.

Литейные свойства сплавов.

Общая характеристика литейных сплавов. Литейные свойства. Технологические свойства в условиях данной технологии литья.

Жидкотекучесть металлов и сплавов. Пробы для определения. Значение этого свойства для практики литейного производства. Понятие о нулевой жидкотекучести. Механизм остановки потока. Факторы, влияющие на жидкотекучесть. Связь жидкотекучести и диаграммы состояния. Значения жидкотекучести по спиральной пробе для некоторых сплавов. Газопоглощение и газовыделение в металлах и сплавах. Источники попадания газов в металл. Влияние газов на свойства сплавов и качество получаемой продукции.

Механизм образования газовой и газоусадочной пористости. Меры предупреждения попадания газов в металл и предотвращения выделения их при затвердевании. Методы определения газонасыщенности сплавов. Ликвационные свойства сплавов. Коэффициент распределения и его роль в ликвационных процессах. Механизм возникновения зональной (прямой и обратной), дендритной и гравитационной ликвации. Критерии оценки ликвации. Влияние ликвации на свойства отливок и меры ее предупреждения.

Основные понятия об усадке. Усадка металлов, сплавов и отливок. Объемная усадка сплавов в жидком состоянии, при затвердевании и в твердом состоянии. Методы определения объемной усадки сплавов в жидком состоянии и при затвердевании. Механизм образования усадочных раковин и усадочной пористости в отливках, их связь с диаграммой состояния и скоростью охлаждения.

Линейная усадка сплавов и отливок. Методы определения. Свободная и затрудненная усадка. Предусадочное расширение сплавов и отливок, его влияние на линейную усадку. Причины, вызывающие предусадочное расширение. Учет линейной усадки при изготовлении и проектированиии модельно-стержневой оснастки. Усадочные напряжения в отливках. Механические, термические и фазовые напряжения. Внутренние напряжения.

Временные и остаточные напряжения. Механизм формирования остаточных напряжений, факторы, влияющие на их величину и мероприятия по их снижению. Методы определения склонности сплавов к остаточным напряжениям. Снятие остаточных напряжений. Релаксационная стойкость и стабилизация размеров отливок.

Горячие трещины в отливках. Горячеломкость сплавов как следствие механических напряжений, низких механических свойств в интервале температур кристаллизации и неоднородности свойств отливки (локализации деформаций). Оценка горячеломкости сплавов, склонности отливок к горячим трещинам.

Холодные трещины, внешние признаки.

Причины образования и оценка склонности сплавов и отливок к холодным трещинам.

Общая характеристика, формирование литой структуры и особенности литейных свойств железоуглеродистых сплавов.

Чугуны: серы, ковкие, высокопрочные, с вермикулярным графитом, синтетические, легированные. Маркировка чугунов, механические свойства, Эксплуатационные свойства чугунов с графитом. Область применения. Особенности формирования литой структуры и особенности литейных свойств чугунов.

Общая характеристика, формирование литой структуры и особенности литейных свойств сплавов цветных металлов.

Общая характеристика алюминиевых, магниевых, медных, цинковых, титановых и никелевых литейных сплавов, их маркировка, область применения.

Особенности формирования литой структуры и технологических свойств цветных литейных сплавов.

РАЗДЕЛ ПЛАВКА

Принципы разработки литейных сплавов и методы оптимизации их химического состава.

Основные понятия, связанные с химическим составом сплавов: базовый компонент, легирующие элементы, примеси модификаторы и т.д. Методы оценки взаимодействия элементов с базовым компонентом. Основные типы взаимодействия компонентов и типы блоков диаграмм состояния литейных сплавов. Важнейшие характеристики диаграммы состояния, определяющие свойства сплавов. Общие закономерности влияния элементов на механические свойства сплавов. Основные методы упрочнения литейных сплавов (растворное, аддитивное, каркасное и дисперсионное). Принципы выбора легирующего комплекса сплавов. Экономическая характеристика легирующих элементов. Методы оптимизации химического состава сплавов, использование ЭВМ для этих целей.

Структура и содержание разделов дисциплины указаны в **Приложении 1** к программе.

5. Образовательные технологии.

Методика преподавания дисциплины «Литейные сплавы» и реализация компетентностного подхода в изложении и восприятии материала предусматривает использование следующих активных и интерактивных форм проведения групповых, индивидуальных, аудиторных занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков, обучающихся:

- лекционные занятия предполагают активную форму обучения студентов теоретическим знаниям с проверкой усвоенных знаний кратким опросом;
- выполнение письменных ответов по заданиям практических работ
- проведение контрольных работ;

 просмотра видеоматериалов по теории плавления и кристаллизации металлов и сплавов и пр., с целью формирования и развития профессиональных навыков обучающихся.

В процессе изучения дисциплины возможно применение дистанционных образовательных технологий в системе LMS Мосполитеха.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов.

В процессе обучения, для текущего контроля успеваемости, используются новая сто бальная рейтинговая система, которая включает в себя следующие оценочные средства:

- инициативность студента на лекции, заключающаяся в ответе на поставленные вопросы, при проведении лекций (от 0 до 2 баллов). При этом данные баллы учитываются сверх ста баллов и не учитываются при формировании интервалов получения итоговой оценки в таблицах Excel;
- короткий письменный опрос по пройденному материалу в начале следующего занятия (от 0 до 2 баллов);
- две контрольные работы, состоящие из 11 вопросов, по завершении двух разделов дисциплины (от 0 до 22 баллов);
- при использовании он-лайн курсов (дистанционного образования) текущий контроль и промежуточная аттестация освоения дисциплины проводится с использованием тестирования (банка тестовых заданий).

Промежуточная аттестация студентов по учебной дисциплине проводится в соответствии с планом $OO\Pi$ — зачет. К промежуточной аттестации студент допускается только при выполнении всех заданий по практическим работам, кроме того, студенту необходимо набрать не менее 40 баллов по рейтинговой системе оценки знаний.

6.1.1 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю).

6.1.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы.

В результате освоения дисциплины (модуля) формируются следующие компетенции:

Код компетенции	В результате освоения образовательной программы обучающийся должен обладать
ПК-1	Способен разрабатывать технологические процессы изготовления машиностроительных изделий средней сложности серийного (массового) производства

В процессе освоения образовательной программы данные компетенции, в том числе их отдельные компоненты, формируются поэтапно в ходе освоения обучающимися дисциплин (модулей), практик в соответствии с учебным планом и календарным графиком учебного процесса.

6.1.2. Описание показателей и критериев оценивания компетенций, формируемых по итогам освоения дисциплины (модуля), описание шкал оценивания.

Показателем оценивания компетенций на различных этапах их формирования является достижение обучающимися планируемых результатов обучения по дисциплине (модулю)

-	-	логические процес				
машиностроитель Показатель	ных изделии средно 		іного (массового) пр оценивания	ооизводства		
HUKASATCIB	2	3	4	5		
	Не зачтено	-	Зачтено	· ·		
знать: - Параметры и режимы технологических процессов изготовления машиностроительных изделий средней сложности серийного (массового) производства; - Причины дефектов при изготовлении машиностроительных изделий средней сложности серийного (массового) производства	Не зачтено Обучающийся демонстрирует полное отсутствие или недостаточное соответствие следующих знаний: параметры и режимы технологических процессов изготовления машиностроительных изделий, а также причины дефектов в изделиях.	Обучающийся демонстрирует неполное соответствие следующих знаний параметры и режимы технологических процессов изготовления машиностроительных изделий, а также причины дефектов в изделиях. Допускаются значительные ошибки, проявляется недостаточность знаний, по ряду показателей, обучающийся испытывает значительные затруднения при оперировании знаниями при их	Зачтено Обучающийся демонстрирует частичное соответствие следующих знаний: параметры и режимы технологических процессов изготовления машиностроительных изделий, а также причины дефектов в изделиях, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях.	Обучающийся демонстрирует полное соответствие следующих знаний: параметры и режимы технологических процессов изготовления машиностроительных изделий, а также причины дефектов в изделиях, свободно оперирует приобретенными знаниями.		
уметь: - Устанавливать по марке материала технологические свойства материалов машиностроительных изделий средней сложности серийного (массового) производства.	Обучающийся не умеет или в недостаточной степени умеет устанавливать по марке материала технологические свойства материалов машиностроительных изделий.	переносе на новые ситуации. Обучающийся демонстрирует неполное соответствие следующих умений: устанавливать по марке материала технологические свойства материалов машиностроительных изделий. Допускаются значительные ошибки, проявляется недостаточность умений, по ряду показателей, обучающийся испытывает значительные затруднения при	Обучающийся демонстрирует частичное соответствие следующих умений: устанавливать по марке материала технологические свойства материалов машиностроительных изделий, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях.	Обучающийся демонстрирует полное соответствие следующих умений: устанавливать по марке материала технологические свойства материалов машиностроительных изделий. Свободно оперирует приобретенными умениями, применяет их в ситуациях повышенной сложности.		

		оперирорании		
		оперировании		
		знаниями при их		
		переносе на новые		
		ситуации.		
владеть:	Обучающийся не	Обучающийся	Обучающийся	Обучающийся в
Назначение	владеет или в	владеет в неполном	частично владеет	полном объеме
технологических	недостаточной	объеме, навыками по	навыками по	владеет навыками по
режимов	степени владеет:	управлению	управлению	управлению
технологических	навыками по	технологическим	технологическим	технологическим
операций	управлению	процессом	процессом	процессом
изготовления	технологическим	изготовления	изготовления	изготовления
машиностроительных	процессом	машиностроительных	машиностроительных	машиностроительных
изделий средней	изготовления	изделий.	изделий.	изделий. Свободно
сложности серийного	машиностроительных		Допускаются	применяет
(массового)	изделий.		незначительные	полученные навыки в
производства			ошибки, неточности,	ситуациях
			затруднения при	повышенной
			аналитических	сложности.
			операциях, переносе	
			умений на новые,	
			нестандартные	
			ситуации.	

Форма промежуточной аттестации: зачет

Пример балльно-рейтинговой системы представлен в фонде оценочных средств. Переход от баллов рейтинга к традиционным оценкам производится с помощью следующей шкалы: зачтено — более 0,55 от максимальной суммы баллов, не зачтено — менее 0,55 от максимальной суммы баллов.

Шкала оценивания	Описание
Зачтено	Выполнены все виды учебной работы, предусмотренные рабочей программой и обучающейся набрал по балльнорейтинговой системе более 55% от максимальной суммы баллов
Не зачтено	Не выполнены все виды учебной работы, предусмотренные рабочей программой и обучающейся набрал по балльнорейтинговой системе менее 55% от максимальной суммы баллов.

Фонды оценочных средств представлены в Приложении 2 к рабочей программе.

7. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

1.Трухов А.П., Маляров А.И. Литейные сплавы и плавка.-М.: Издательский центр «Академия».-2004.-336c

б) дополнительная литература:

- 1. Баландин Г.Ф. Основы теории формирования отливок.- М.: машиностроение, М.: МВТУ, 1998.-450с.
 - 2. Гуляев Б.В. Теория литейных процессов.- М.: Машиностроение, 1976.-214 с.
- 3. Справочник по чугунному литью под ред. Гиршовича Н.Г.-Л.: Машиностроение, 1978.- 738 с.

в) программное обеспечение и интернет-ресурсы

Интернет ресурсы:

- 1. https://www.youtube.com/watch?v=j6ogo6ocqXM
- 2. https://www.youtube.com/watch?v=e6O9h2ce8Ac

8. Материально-техническое обеспечение дисциплины

Лекции проводятся в аудиториях кафедры и общего фонда, оснащённых мультимедийным проектором для показа видеофильмов, слайдов, презентаций.

Для проведения практических работ используется лаборатория процессов литья H106 и aв 2110.

Основное оборудование:

- 1. Высокочастотная плавильная печь ИСТ
- 2. Плавильная печь для Al- сплавов
- 3. Бегуны (смесители формовочной смеси)

9. Методические рекомендации для самостоятельной работы студентов

Самостоятельная работа студентов должна обеспечить выработку навыков самостоятельно творческого подхода к решению задач, направленных на закрепление знаний, полученных при аудиторных занятиях.

Задачи самостоятельной работы студента:

- развитие навыков самостоятельной учебной работы;
- освоение содержания дисциплины;
- углубление содержания и осознание основных понятий дисциплины;
- использование материала, собранного и полученного в ходе самостоятельных занятий для эффективной подготовки к зачету.

Виды внеаудиторной самостоятельной работы:

- самостоятельное изучение отдельных тем дисциплины;
- подготовка к лекционным занятиям;
- -подготовка к практическим работам
- подготовка к контрольным работам.

Для выполнения любого вида самостоятельной работы необходимо пройти следующие этапы:

- определение цели самостоятельной работы;
- конкретизация познавательной задачи;
- самооценка готовности к самостоятельной работе;
- выбор адекватного способа действия, ведущего к решению задачи;
- планирование работы (самостоятельной или с помощью преподавателя) над заданием;
- осуществление в процессе выполнения самостоятельной работы самоконтроля (промежуточного и конечного) результатов работы и корректировка выполнения работы;
 - рефлексия;

Вопросы, выносимые на самостоятельную работу

- 1. Моделирование процесса роста дендритных кристаллических структур (ПК-1)
- 2. Математическая модель процесса направленной кристаллизации (ПК-1)
- 3. Легирование и модифицирование литейных сплавов (ПК-1)
- 4. Особенности определения физико-механических свойств литейных сплавов. (ПК-1)

- 5. Конструкция литейных проб для определения литейных свойств металлов и сплавов (ПК-1)
- 6. Особенности назначения сплавов для изготовления крупногабаритных машиностроительных изделий (ПК-1)

10. Методические рекомендации для преподавателя

При изучении теоретического материала особое внимание необходимо обратить на взаимосвязь между литейными свойствами металлов и сплавов, и их положении на диаграмме состояния конкретного сплава. При проведении лекций необходимо использовать современные программы по моделированию литейных процессов для наглядности и облегчения понимания протекания многофакторного процесса кристаллизации металлов и сплавов.

При проведении практических работ главное внимание следует уделять практическим навыкам по изготовлению литейных проб для определения технологических свойств сплавов.

Структура и содержание дисциплины «Литейные сплавы» по направлению подготовки 15.03.01 «Машиностроение»

(бакалавр)

Раздел		Виды учебной работы, включая самостоятельную работу студентов и трудоемкость в часах			Виды самостоятельной работы студентов			Формы аттестации						
			Л	П/С	Лаб	CPC	КСР	К.Р.	К.П.	РГР	Рефр.	К/р	Э	3
1. Лекция 1. Введение. Цели и задачи дисциплины. Место и роль дисциплины в общей структуре подготовки бакалавров, связь с другими дисциплинами. Зарождение и рост кристаллов. Характер затвердевания металлов и сплавов.	7	1	2			4								
2. Лекция 2. Технологические (литейные) свойства сплавов. Склонность сплавов к усадочным раковинам и пористости. Линейная усадка сплавов и отливок.	7	2	2			4								
3. Лекция 3. Усадочные напряжения. Формирование остаточных напряжений.	7	3	2			4								
4. Лекция 4. Склонность сплавов и отливок к горячим и холодным трещинам.	7	4	2			4								
5. Лекция 5. Газонасыщенность сплавов. Неметаллические включения.	7	5	2			4								
6. Лекция 6. Ликвация. Зависимость механических свойств от толщины стенок отливок.	7	6	2			4								
7.Практическое занятие 1. Черные сплавы. Чугуны. Стали. Практическое занятие. Черные сплавы. Маркировка. Общие положения и классификация. Область применения.	7	7		2		4								
8. Практическое занятие 2.Цветные сплавы. Медные сплавы. Алюминиевые сплавы. Цинковые сплавы. Титановые сплавы. Практическое занятие. Цветные сплавы. Маркировка, классификация, область применения.	7	8		2		4								
9. Лекция Плавка	7	9	2			4								
10. Лекция Плавка	7	10	2			4								

11. Лекция Плавка									
	7	11	2		4				
12. Лекция Плавка	7	12	2		4				
13. Лекция Плавка	7	13	2		4				
14. Лекция Плавка	7	14	2		4				
15. Лекция Плавка	7	15	2		4				
16. Практическое занятие	7	16		2	4				
17. Практическое занятие	7	17		2	4				
18. Практическое занятие	7	18		2	4				
ИТОГО			26	10	72				+

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

Направление подготовки: **15.03.01** «**Машиностроение**» ОП (профиль): «Комплексные технологические процессы и оборудование машиностроения».

Форма обучения: очная Тип задач профессиональной деятельности: (производственно-технологическая)

Кафедра: Машины и технология литейного производства

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

«Литейные сплавы»

Составители: Доцент А.А. Пономарев

ПОКАЗАТЕЛЬ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

Таблица 1

«Литейные сплавы»

ФГОС ВО 15.03.01 Машиностроение

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие компетенции:

КО	мпетенции		Технология	Форма	Степени уровней освоения
индекс	ФОРМУЛИРОВКА	Перечень компонентов	формирования компетенций	оценочного средства**	компетенций
ПК-1	Способен	знать:	лекция,	$\Pi/O, K/P, \Pi,$	Базовый уровень:
	разрабатывать	-теоретические основы плавления	самостоятельная	П.З. (Т, если	воспроизводство полученных
	технологические	и кристаллизации сплавов и	работа,	применяется)	знаний в ходе текущего
	процессы	формирования литой структуры	практические		контроля; умение решать
	изготовления	отливки;	работы,		типовые задачи, принимать
	машиностроительных	-виды технологических проб для			профессиональные и
	изделий средней	исследования физико-химических,			управленческие решения по
	сложности серийного	технологических свойств			известным алгоритмам,
	(массового)	литейных сплавов для			правилам и методикам
	производства	изготовления			Повышенный уровень:
		машиностроительных изделий;			практическое применение
		-основные типы литейных сплавов			полученных знаний в процессе
		и их маркировки.			выполнения практических
		-особенности назначения			работ; готовность решать
		следующих технологических			практические задачи
		факторов и параметров при литье			повышенной сложности,
		машиностроительных изделий:			нетиповые задачи, принимать
		температуры заливки различных			профессиональные и
		металлов и сплавов в зависимости			управленческие решения в
		от конфигурации отливки,			условиях неполной
		температуры литейной формы,			определенности, при
		выбранного литейного сплава и			недостаточном
		его технологических свойств,			документальном, нормативном
		материала литейной формы.			и методическом обеспечении

уметь:	практическое применение
-строить кривые охлажд	
сплавов по диаграммам состоя	
-определять по технологичес	
пробам физико-химичес	
технологические свой	ства повышенной сложности,
литейных сплавов	для нетиповые задачи, принимать
изготовления	профессиональные и
машиностроительных изделий	управленческие решения в
-расшифровывать м	арки условиях неполной
различных типов литей	іных определенности, при
сплавов	недостаточном
- подобрать сплав под конкрет	тный документальном, нормативном
технологический процесс	и методическом обеспечении
назначить технологиче	ские
параметры для получ	
бездефектной отливки, свой	ства
которой удовлетвор	ТОНКО
требованиям техничес	кого
задания.	
владеть:	
-навыками по изготовления	
литейных проб и определению	
технологических свойств спла	30В,
в ходе проведения	
экспериментальных исследова	ний.
- навыками и умениями	
грамотного выбора сплава при	
проектировании технологическ	кого
процесса получения	
машиностроительных отливок	

^{**-} Сокращения форм оценочных средств см. в таблице 2 к рабочей программе.

Перечень оценочных средств по дисциплине «Литейные сплавы»

№ OC	Наименование оценочногосредс тва	Краткая характеристика оценочного средства	Представление оценочного средства в ФОС
1	Контрольная работа (K/P)	Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу	Перечень вопросов для контрольных работ
2		Средство контроля, организованное, как короткий письменный ответ обучающегося на темы, связанные с изучаемой дисциплиной. Рассчитанное на выяснение объема знаний обучающегося по пройденному разделу, теме, проблеме и т.п.	Перечень вопросов
3	Тестирование (применение онлайн образовательных технологий) (T)	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося	Фонд тестовых заданий
4	Практическое занятие (П.З.)	Письменное задание по каждой изучаемой теме	Перечень примерных вопросов для ответа на практическое задание.

Перечень вопросов для письменного опроса, в начале каждой лекции по пройденному материалу, и контрольных работ

- 1. Дайте определение понятию «Литейный сплав» и опишите, что входит в его состав.
- 2. Дайте определение понятиям «Основа сплава», «Легирующий элемент».
- 3. Дайте определение понятиям «Модификатор», «Примесь».
- 4. Перечислите вещества, кристаллизующиеся при постоянной температуре.
- 5. Зарисуйте кривую нагрева чистого металла и объясните постоянство температуры металла при плавлении или кристаллизации.
- 6. Напишите, когда оперируют понятием затвердевание, а когда кристаллизация.
- 7. Дайте определение понятиям «Переохлаждение».
- 8. Зарисуйте кривую охлаждения чистого металла с переохлаждением.
- 9. Напишите формулу, чему равняется критический размер зародыша сферической формы.
- 10. Почему при температуре кристаллизации процесс зарождения кристаллов не идет.
- 11. Напишите, какими параметрами можно управлять для изменения размера кристаллов (зерен) в отливке.
- 12. Зарисуйте схему зависимости скорости зарождения центров кристаллизации и линейной скорости роста кристаллов от переохлаждения.
- 13. Зарисуйте схему кристаллического строения отливки и опишите условия формирования каждой зоны (мелкозернистая, столбчатая, крупнозернистая).
- 14. Дайте определения процессу модифицирования сплава.
- 15. Назовите главные отличия модифицирования от легирования.
- 16. Перечислите, что относится к модификаторам первого рода
- 17. Перечислите, что относится к модификаторам второго рода
- 18. Зарисуйте схему последовательного, смешанного и объемного типов затвердевания.
- 19. Зарисуйте схему влияния скорости теплоотвода на ширину двухфазной зоны.
- 20. Перечислить литейные (технологические) свойства сплавов.
- 21. Дайте определение понятию «жидкотекучесть» сплава и перечислите дефекты, возникающие из-за недостаточной жидкотекучести, нарисовав схемы их образования.
- 22. Опишите факторы, влияющие на жидкотекучесть и назовите их, если факторы перечислены в виде формулы (ПРИМЕР: где L- это жидкотекучесть и т.п.)
- 23. Назовите главное отличие между усадкой сплавов и отливок. Зарисуйте схемы изменения объема при охлаждении сплава с Ткр=const и сплавов, имеющих интервал кристаллизации.
- 24. Опишите механизм образования открытой и закрытой усадочной раковины.
- 25. Зарисуйте схему зависимости объемов усадочных раковин и пористости от положения сплава на диаграмме состояния.
- 26. Дайте определение усадочным напряжениям и на какие виды они подразделяются (эпюра напряжений).
- 27. Опишите технологические пробы для определения остаточных напряжений и назовите пути уменьшения их в отливках.
- 28. Нарисуйте схему зависимости растворимости газов в металлах от температуры и назовите факторы, влияющие на растворимость газов.
- 29. Опишите метод определения газонасыщенности сплавов.
- 30. Назовите две большие группы, на которые подразделяются металлы и сплавы и назовите по два представителя из каждой группы, дав одному определение.
- 31. Расшифруйте марки сплавов: СЧ25, ВЧ55, ЛЦ40С, БрО10Ф25.

Тестирование (применение он-лайн образовательных технологий).

Промежуточные тесты. Каждый промежуточный тест может объединять задания (вопросы) по нескольким темам дисциплины — не менее 2 тестовых заданий/вопросов на 1 академический час общей трудоемкости дисциплины. Задания/вопросы к тестам должны быть сгруппированы по темам дисциплины. Тест должен содержать вопросы по материалам теории и пройденного практикума. Рекомендуется включать задания/вопросы разных типов. Для каждого семестра изучаемой дисциплины рекомендуется не менее одного, но не более пяти тестов. Так как разрабатываемые тесты предназначены для ввода в LMS Университета, то необходимо учитывать технические возможности самой программы контроля. Система Moodle, используемая в LMS Университета, поддерживает следующие типы тестовых заданий.

- задания на множественный выбор;
- задания с ответами «верно» «неверно»;
- задания на соответствие;
- задания на ввод численного значения;
- задания на дополнение.

Автор тестов сам составляет, и каждый год обновляет свой банк тестовых заданий.

Рекомендации по формированию банка тестовых заданий

Тестовые задания/вопросы учебного курса в LMS Moodle хранятся в «Банке тестовых заданий учебного курса» и уже оттуда добавляются в тест. Такой подход позволяет использовать один и тот же вопрос в нескольких тестах курса.

Тесты могут создаваться преподавателем непосредственно в LMS, но более простым способом является импорт в банк тестовых заданий вопросов/заданий, заранее подготовленных с использованием любого текстового редактора.

В LMS Moodle тестовые задания хранятся в текстовом формате GIFT, в котором по определенным правилам оформляются (форматируются) задания/вопросы теста и варианты ответов для них.

Контрольная работа №1. (пример) Перечень вопросов:

- 1. Что такое сплав. Определение.
- 2. Что такое основа сплава. Определение.
- 3. Что такое примеси. Какие они бывают.
- 4. Что такое модификаторы.
- 5. Легирующие элементы.
- 6. Кристаллизация. Определение.
- 7. Зарождение и рост кристаллов. Характер затвердевания металлов и сплавов.
- 8. Литейные свойства сплавов. Перечислите их.
- 9. Жидкотекучесть. Определение. Пробы на жидкотекучесть.
- 10. Горячие трещины. Определение. Пробы.
- 11. Усадка. Виды усадки. Технологические пробы на усадку.

Контрольная работа №2. (пример) Перечень вопросов:

- 1. Газонасыщенность сплава. Пробы.
- 2. Ликвация. Виды ликвации.
- 3. Усадочные напряжения. Пробы. Механизм образования.
- 4. Усадочные раковины и пористость. Пробы.
- 5. Медные сплавы (латуни и бронзы)

- 6. Алюминиевые сплавы (силумины).
- 7. Черные сплавы (чугуны: серые, ковкие, высокопрочные, с вермикулярным графитом).
- 8. Стали (легированные)
- 9. Цинковые сплавы.
- 10. Титановые сплавы.
- 11. Стали (специальные).

Перечень примерных вопросов для ответа на практическом занятии.

- 1. Дайте определение что такое латунь?
- 2. Дайте определение что такое бронза?
- 3. Дайте определение что такое черные сплавы?
- 4. Чем сталь отличается от чугуна?
- 5. Почему химический состав для чугуна является факультативным?
- 6. Дайте определение что такое сталь?
- 7. Дайте определение что такое чугун?
- 8. Какие бывают чугуны?
- 9. Чем модифицируют высокопрочных чугун?
- 10. Какие характеристики регламентирует ГОСТ по чугунам?
- 11. Назовите температуру плавления чистого алюминия?
- 12. Назовите температуру плавления чистой меди?
- 13. Сколько углерода содержится в чугуне?
- 14. Сколько углерода содержится в стали?
- 15. Расшифруйте сплав ЛЦ40С.
- 16. Расшифруйте сплав СЧ20
- 17. Расшифруйте сплав КЧ30
- 18. Расшифруйте сплав Ст5
- 19. Назовите пример применения в машиностроении чугуна?
- 20. Какие изделия можно делать из стали в машиностроительном производстве?